Project description:During senescence of detached rice leaves, tryptophan (Trp) and Trp-derived secondary metabolites such as serotonin and 4-coumaroylserotonin accumulated in concert with methanol (MeOH) production. This senescence-induced MeOH induction was closely associated with levels of pectin methylesterase (PME)1 mRNA and PME enzyme activity. Exogenous challenge of detached rice leaves with 1% MeOH accelerated Trp and serotonin biosynthesis with induction of the corresponding genes. No other solvents including ethanol resulted in a Trp-inducing effect. This MeOH-induced Trp synthesis was positively regulated by abscisic acid but negatively regulated by cytokinin, suggesting hormonal involvement on the action of MeOH. Endogenous overproduction or suppression of MeOH either by PME1 overexpression or RNAi gene silencing revealed that PME1 overexpressing lines produced twofold higher Trp levels with elevated Trp biosynthetic gene expression, whereas RNAi lines showed twofold reduction in Trp level in healthy control rice leaves, suggesting that MeOH acts as an endogenous elicitor to enhance Trp biosynthesis. Among many transcription factors induced following MeOH treatment, the WRKY family showed significant induction patterns of which WRKY14 appeared to play a key regulatory role in MeOH-induced Trp and Trp-derived secondary metabolite biosynthesis. Total RNAs were extracted from the detached rice leaves with 1% MeOH or distilled water for 1 d, and gene expression was compared between the two groups with two replicates. DW, detached leaves in distilled water for 1 day; MeOH (2-replications), methanol treated detached leaves at the same time point as control. 2 sets of separately normalized data; DW-MeOH(1) and MeOH(2).
Project description:During senescence of detached rice leaves, tryptophan (Trp) and Trp-derived secondary metabolites such as serotonin and 4-coumaroylserotonin accumulated in concert with methanol (MeOH) production. This senescence-induced MeOH induction was closely associated with levels of pectin methylesterase (PME)1 mRNA and PME enzyme activity. Exogenous challenge of detached rice leaves with 1% MeOH accelerated Trp and serotonin biosynthesis with induction of the corresponding genes. No other solvents including ethanol resulted in a Trp-inducing effect. This MeOH-induced Trp synthesis was positively regulated by abscisic acid but negatively regulated by cytokinin, suggesting hormonal involvement on the action of MeOH. Endogenous overproduction or suppression of MeOH either by PME1 overexpression or RNAi gene silencing revealed that PME1 overexpressing lines produced twofold higher Trp levels with elevated Trp biosynthetic gene expression, whereas RNAi lines showed twofold reduction in Trp level in healthy control rice leaves, suggesting that MeOH acts as an endogenous elicitor to enhance Trp biosynthesis. Among many transcription factors induced following MeOH treatment, the WRKY family showed significant induction patterns of which WRKY14 appeared to play a key regulatory role in MeOH-induced Trp and Trp-derived secondary metabolite biosynthesis.
Project description:High-throughput sequencing of small RNAs from rice was used to identify distinct miRNAs that are responsive to elicitors from the fungal pathogen Magnaporthe oryzae. [Expression profiling by array] We used microarrays to determine the expression behaviour of target genes for elicitor-regulated miRNAs. [High throughput sequencing] High-throughput sequencing of rice small RNAs was performed in two different tissues, leaves and roots, and two different time point of elicitor treatment, 30' and 2h Amplicons were prepared by 5´and 3´adaptor ligation in which the 5'-adaptor contained a 'barcode' consisting of a 4-nucleotide identifier sequence for each sample. The libraries containing unique barcodes were combined and subjected to pyrosequencing (454 Life SciencesTM, Roche)
Project description:High-throughput sequencing of small RNAs from rice was used to identify distinct miRNAs that are responsive to elicitors from the fungal pathogen Magnaporthe oryzae. [Expression profiling by array] We used microarrays to determine the expression behaviour of target genes for elicitor-regulated miRNAs. [High throughput sequencing] High-throughput sequencing of rice small RNAs was performed in two different tissues, leaves and roots, and two different time point of elicitor treatment, 30' and 2h Amplicons were prepared by 5M-BM-4and 3M-BM-4adaptor ligation in which the 5'-adaptor contained a 'barcode' consisting of a 4-nucleotide identifier sequence for each sample. The libraries containing unique barcodes were combined and subjected to pyrosequencing (454 Life SciencesTM, Roche) [Expression profiling by array] Leaves from rice plants were harvested at two time points after the onset of treatment (30' and 2h) with elicitors of Magnaporthe oryzae 18.1 and used for RNA extraction and hybridization on Affymetrix microarrays. Mock inoculations were performed with sterile water for control experiments. Three biological replicates were analyzed. Each sample represented a pool of approximately 150 rice plants. [High throughput sequencing] 8 samples examined: leaves and roots, treated or not with elicitors at two different time points, 30' and 2h (2x2x2)
Project description:5 leaves old rice plantlets were infected with Magnaporthe grisea spores and zero, two hours and twenty four houres after infection samples were collected
Project description:Cytokinins are plant hormones with biological functions ranging from coordination of plant growth and development to the regulation of senescence. A series of 2-chloro-N6-(halogenobenzylamino)purine ribosides was prepared and tested for cytokinin activity in selected bioassays. Several compounds showed significant activity, especially in delaying senescence in detached wheat leaves. We used microarrays to gather information about the reprogramming of gene transcription when senescent Arabidopsis leaves were treated with selected C2-substituted aromatic cytokinin ribosides that showed high activity in the senescence bioassay.
Project description:Enhancing grain production of rice (Oryza sativa L.) is a top priority in ensuring food security for human being. One approach to increase yield is to delay leaf senescence and to extend the available time for photosynthesis. microRNAs (miRNAs) are key regulators for aging and cellular senescence in eukayotes. However, miRNAs and their roles in rice leaf senescence remain unexplored. Here, we report identification of miRNAs and their putative target genes by deep sequencing of six small RNA libraries, six RNA-seq libraries and two degradome libraries from the leaves of two super hybrid rice, Nei-2-You 6 (N2Y6, age-resistant rice) and Liang-You-Pei 9 (LYP9, age-sensitive rice). Totally 372 known miRNAs and 162 miRNA candidates were identified, and 1145 targets were identified. Compared with the expression of miRNAs in the leaves of LYP9, the numbers of miRNAs up-regulated and down-regulated in the leaves of N2Y6 were 47 and 30 at early stage of grain-filling, 21 and 17 at the middle stage, and 11 and 37 at the late stage, respectively. Six miRNA families, osa-miR159, osa-miR160 osa-miR164, osa-miR167, osa-miR172 and osa-miR1848, targeting the genes encoding APETALA2 (AP2), zinc finger proteins, salicylic acid-induced protein 19 (SIP19), Auxin response factors (ARF) and NAC transcription factors, respectively, were found to be involved in leaf senescence through phytohormone signaling pathways. These results provided valuable information for understanding the miRNA-mediated leaf senescence of rice, and offered an important foundation for rice breeding. [miRNA] sample 1:The flag leaves at early stage of grain-filling of N2Y6 rice; sample 2: The flag leaves at middle stage of grain-filling of N2Y6 rice;sample 3:The flag leaves at late stage of grain-filling of N2Y6 rice; sample 4:The flag leaves at early stage of grain-filling of LYP9 rice; sample 5: The flag leaves at middle stage of grain-filling of LYP9 rice;sample 6:The flag leaves at late stage of grain-filling of LYP9 rice. [DGE]: samples 7-12 [degradome (targets)]: samples 13:The flag leaves at mixed stages of grain-filling of N2Y6 rice; sample 14:The flag leaves at mixed stages of grain-filling of LYP9 rice
Project description:Cytokinins are plant hormones with biological functions ranging from coordination of plant growth and development to the regulation of senescence. A series of 2-chloro-N6-(halogenobenzylamino)purine ribosides was prepared and tested for cytokinin activity in selected bioassays. Several compounds showed significant activity, especially in delaying senescence in detached wheat leaves. We used microarrays to gather information about the reprogramming of gene transcription when senescent Arabidopsis leaves were treated with selected C2-substituted aromatic cytokinin ribosides that showed high activity in the senescence bioassay. Arabidopsis senescent leaves were treated with cytokinins and subsequently used for RNA extraction and hybridization on Affymetrix microarrays. 21-days old Arabidopsis leaves were treated with the appropriate cytokinin or left untreated (DMSO only).
Project description:Although Cochliobolus miyabeanus is an important fungal leaf pathogen on rice plants worldwide, it is largely neglected by molecular plant phytopathologists. To shed new light on the molecular and genetic basis of the rice – C. miyabeanus interaction, we compared the transcriptome of rice leaves 12h post inoculation to uninfected leaves. Even though usable sources of resistance against brown spot disease caused by C. miyabeanus are scarce, silicon application emerges as a sustainable protection strategy. Many articles report the beneficial effect of silicon on brown spot resistance. however the underlying mechanisms remain largely unclear. The influence of silicon application on the transcriptome of healthy and infected rice leaves 12hpi was compared as well in an attempt to disentangle the modulation of silicon-induced brown spot resistance.
Project description:The plant hormone jasmonic acid (JA) has been known as a signal molecule that is induced by various stresses and mediates plant defense responses. Rice O. sativa inductively produces variety of defensive compounds upon abiotic and biotic stress conditions, such as wounding and insect attack. We identified wound-inducible genes by comparison with transcriptomes between wounded and untreated wild-type rice leaves. Expression profiling in wild-type rice leaves treated by wounding for 0.5, 1, 2 and 4 h was compared with that in untreated control using two-color method with two biological replicates.