Project description:Inflammation has a causal role in many cancers. In prostate cancers, epidemiological data suggest a link between prostatitis and subsequent cancer development, but a proof for this concept in a tumor model has been lacking. A constitutively active version of the IkappaB kinase 2 (IKK2), the molecule activated by a plethora of inflammatory stimuli, was expressed specifically in the prostate epithelium. Signaling of the IKK2/NF-kappaB axis was insufficient for transformation of prostate tissue. However, while PTEN+/- epithelia exhibited intraepithelial neoplasias only recognizable by nuclear alterations, additional IKK2 activation led to an increase in tumor size and formation of cribriform structures and to a fiber increase in the fibroblastic stroma. This phenotype was coupled with inflammation in the prostate gland characterized by infiltration of granulocytes and macrophages. Molecular characterization of the tissues showed a specific loss of smooth muscle markers as well as expression of chemokines attracting immune cells. Isolation of epithelial and stromal cells showed differential chemokine expression by these cells. Correlation studies showed the inflammatory phenotype coupled to loss of smooth muscle in infiltrated glands, but maintenance of the phenotype in glands where inflammation had decreased. Despite the loss of the smooth muscle barrier, tumors were not invasive in a stable genetic background. Data mining revealed that smooth muscle markers are downregulated in human prostate cancers and literature data show that loss of these markers in primary tumors is associated with subsequent metastasis. Our data show that loss of smooth muscle and invasiveness of the tumor are not coupled. Thus, inflammation during early steps of tumorigenesis can lead to increased tumor size and a potential change in the subsequent metastatic potential, but the tumor requires an additional transformation to become a carcinoma. Microarray analysis was used to determine expression differences in lateral prostates from mice with PTEN+/- IKK2ca/ca epithelium (n=3) compared to lateral prostates from mice with PTEN+/- epithelium (n=3).
Project description:Inflammation has a causal role in many cancers. In prostate cancers, epidemiological data suggest a link between prostatitis and subsequent cancer development, but a proof for this concept in a tumor model has been lacking. A constitutively active version of the IkappaB kinase 2 (IKK2), the molecule activated by a plethora of inflammatory stimuli, was expressed specifically in the prostate epithelium. Signaling of the IKK2/NF-kappaB axis was insufficient for transformation of prostate tissue. However, while PTEN+/- epithelia exhibited intraepithelial neoplasias only recognizable by nuclear alterations, additional IKK2 activation led to an increase in tumor size and formation of cribriform structures and to a fiber increase in the fibroblastic stroma. This phenotype was coupled with inflammation in the prostate gland characterized by infiltration of granulocytes and macrophages. Molecular characterization of the tissues showed a specific loss of smooth muscle markers as well as expression of chemokines attracting immune cells. Isolation of epithelial and stromal cells showed differential chemokine expression by these cells. Correlation studies showed the inflammatory phenotype coupled to loss of smooth muscle in infiltrated glands, but maintenance of the phenotype in glands where inflammation had decreased. Despite the loss of the smooth muscle barrier, tumors were not invasive in a stable genetic background. Data mining revealed that smooth muscle markers are downregulated in human prostate cancers and literature data show that loss of these markers in primary tumors is associated with subsequent metastasis. Our data show that loss of smooth muscle and invasiveness of the tumor are not coupled. Thus, inflammation during early steps of tumorigenesis can lead to increased tumor size and a potential change in the subsequent metastatic potential, but the tumor requires an additional transformation to become a carcinoma.
Project description:Selective stimulation of IL-4 receptor on smooth muscle induces airway hyper-responsiveness in mice. Abstract: Production of the cytokines IL-4 and IL-13 is increased in both human asthma and mouse asthma models and Stat6 activation by the common IL-4/IL-13R drives most mouse model pathophysiology, including airway hyperresponsiveness (AHR). However, the precise cellular mechanisms through which IL-4Rα induces AHR remain unclear. Overzealous bronchial smooth muscle constriction is thought to underlie AHR in human asthma, but the smooth muscle contribution to AHR has never been directly assessed. Furthermore, differences in mouse vs. human airway anatomy and observations that selective IL-13 stimulation of Stat6 in airway epithelium induces murine AHR raise questions about the importance of direct IL-4R effects on smooth muscle in murine asthma models and relevance of these models to human asthma. Using transgenic mice in which smooth muscle is the only cell type that expresses or fails to express IL-4Rα, we demonstrate that direct smooth muscle activation by IL-4, IL-13, or allergen is sufficient, but not necessary, to induce AHR and show that 5 genes known to promote smooth muscle migration, proliferation and contractility are activated by IL-13 in smooth muscle in vivo. These observations demonstrate that IL-4Rα promotes AHR through multiple mechanisms and provide a model for testing smooth muscle-directed asthma therapeutics.
Project description:Smooth muscle cell TGFβ signaling is one of the primary drivers of smooth muscle cell maturation. Inhibition of smooth muscle cell TGFβ signaling in hyperlipidemic mice induces vessel wall inflammation and vessel wall dilation/dissection and leads aortic aneurysm. We performed bulk RNAseq method to examine smooth muscle cell gene expression profile using fresh human tissues from normal aortic media smooth muscle cells and aneurysm aortic media smooth muscle cells.
Project description:Selective stimulation of IL-4 receptor on smooth muscle induces airway hyper-responsiveness in mice. Abstract: Production of the cytokines IL-4 and IL-13 is increased in both human asthma and mouse asthma models and Stat6 activation by the common IL-4/IL-13R drives most mouse model pathophysiology, including airway hyperresponsiveness (AHR). However, the precise cellular mechanisms through which IL-4Rα induces AHR remain unclear. Overzealous bronchial smooth muscle constriction is thought to underlie AHR in human asthma, but the smooth muscle contribution to AHR has never been directly assessed. Furthermore, differences in mouse vs. human airway anatomy and observations that selective IL-13 stimulation of Stat6 in airway epithelium induces murine AHR raise questions about the importance of direct IL-4R effects on smooth muscle in murine asthma models and relevance of these models to human asthma. Using transgenic mice in which smooth muscle is the only cell type that expresses or fails to express IL-4Rα, we demonstrate that direct smooth muscle activation by IL-4, IL-13, or allergen is sufficient, but not necessary, to induce AHR and show that 5 genes known to promote smooth muscle migration, proliferation and contractility are activated by IL-13 in smooth muscle in vivo. These observations demonstrate that IL-4Rα promotes AHR through multiple mechanisms and provide a model for testing smooth muscle-directed asthma therapeutics. For the microarray aspect of of the study, there were three groups of mice: 1. IL4R gene knockout (KO) mice 2. WT mice 3. IL4R KO mice that were also transgenic for a gene construct that expressed IL4R under the control of the smooth muscle-specific promoter from the SMP8 gene All mice were subjected to intratracheal IL13 exposure for 7 days, and whole lung RNA was prepared for microarray analysis 24 hours after the last instillation. Per treatment and genotype: Two RNA pools were made from four mice each. These were labeled and hybridized to make a total of 6 microarrays. RNA was labeled with the standard Affymetrix 3' labeling protocol to make cDNA that was hybridized to Mouse MOE 430 plus 2.0 GeneChips. Gene transcripts were identified that differed in their relative expression as a function of IL4R expression on the smooth muscle cells.
Project description:Smooth muscle cell TGFβ signaling is one of the primary drivers of smooth muscle cell maturation. Inhibition of smooth muscle cell TGFβ signaling in hyperlipidemic mice induces vessel wall inflammation and vessel wall dilation/dissection and leads aortic aneurysm. We performed scRNAseq method to examine smooth muscle cell gene expression profile using Apoe and SMC specific TGFbR2 KO in Apoe background mice.
Project description:Our objective is to identify new miRNAs and their target mRNAs involved in arterial stenosis, especially pathological changes of smooth muscle cells. To this end, the balloon injury model was used to induce the activation of smooth muscle cells by damaging arterial endothelial cells. The balloon-injured rat carotid arteries were isolated and subjected to the RNA-Seq.
Project description:Our objective is to identify new miRNAs and their target mRNAs involved in arterial stenosis, especially pathological changes of smooth muscle cells. To this end, the balloon injury model was used to induce the activation of smooth muscle cells by damaging arterial endothelial cells. The balloon-injured rat carotid arteries were isolated and subjected to the RNA-Seq. Note: Raw sequencing data have been lost for this dataset.
Project description:Smooth muscle is an essential component of the intestine, both to maintain its structure and produce peristaltic and segmentation movements. However, very little is known about other putative roles that smooth muscle may have. Here, we show that smooth muscle is the dominant supplier of BMP antagonists, which are niche factors that are essential for intestinal stem cell maintenance. Furthermore, muscle-derived factors can render epithelium reparative and fetal-like, which includes heightened YAP activity. Mechanistically, we find that the matrix metalloproteinase MMP17, which is exclusively expressed by smooth muscle, is required for intestinal epithelial repair after inflammation- or irradiation-induced injury. Furthermore, we provide evidence that MMP17 affects intestinal epithelial reprogramming indirectly by cleaving the matricellular protein PERIOSTIN, which itself is able to activate YAP. Together, we identify an important signaling axis that firmly establishes a role for smooth muscle as a modulator of intestinal epithelial regeneration and the intestinal stem cell niche.
Project description:Smooth muscle is an essential component of the intestine, both to maintain its structure and produce peristaltic and segmentation movements. However, very little is known about other putative roles that smooth muscle may have. Here, we show that smooth muscle is the dominant supplier of BMP antagonists, which are niche factors that are essential for intestinal stem cell maintenance. Furthermore, muscle-derived factors can render epithelium reparative and fetal-like, which includes heightened YAP activity. Mechanistically, we find that the matrix metalloproteinase MMP17, which is exclusively expressed by smooth muscle, is required for intestinal epithelial repair after inflammation- or irradiation-induced injury. Furthermore, we provide evidence that MMP17 affects intestinal epithelial reprogramming indirectly by cleaving the matricellular protein PERIOSTIN, which itself is able to activate YAP. Together, we identify an important signaling axis that firmly establishes a role for smooth muscle as a modulator of intestinal epithelial regeneration and the intestinal stem cell niche.