Project description:There are two major subtype of cells in breast cancer. These cancer cells response differently to glutamine deprivation, here we use one luminal type of breast cancer cell (MCF7) and one basal type of breast cancer cell (MDAMB231) to compare the gene expression differences of these two types of cancer cells in glutamine deprivation. Many cancer cells depend on glutamine for survival and oncogenic transformation. Although targeting glutamine metabolism is proposed as novel therapies, their heterogeneity among different tumors is unknown. Here, we found only basal-type, but not luminal-type breast cancer cells, exhibited phenotypes of glutamine dependency and may benefit from glutamine-targeting therapeutics. The glutamine independence of luminal-type cells is caused by the specific expression of glutamine synthetase (GS), a pattern recapitulated in luminal breast cancers. The co-culture of luminal cells partially rescued the basal cells under glutamine deprivation, suggesting glutamine symbiosis. The luminal-specific expression of GS is directly induced GATA3 and down-regulates glutaminase expression to maintain subtype-specific glutamine metabolism. Collectively, these data indicate the distinct glutamine phenotypes among breast cells and enable the rational design of glutamine targeted therapies. Gene expression analysis in MCF7 and MDAMB231 cultured with or without glutamine for 24h
Project description:There are two major subtype of cells in breast cancer. These cancer cells response differently to glutamine deprivation, here we use one luminal type of breast cancer cell (MCF7) and one basal type of breast cancer cell (MDAMB231) to compare the gene expression differences of these two types of cancer cells in glutamine deprivation. Many cancer cells depend on glutamine for survival and oncogenic transformation. Although targeting glutamine metabolism is proposed as novel therapies, their heterogeneity among different tumors is unknown. Here, we found only basal-type, but not luminal-type breast cancer cells, exhibited phenotypes of glutamine dependency and may benefit from glutamine-targeting therapeutics. The glutamine independence of luminal-type cells is caused by the specific expression of glutamine synthetase (GS), a pattern recapitulated in luminal breast cancers. The co-culture of luminal cells partially rescued the basal cells under glutamine deprivation, suggesting glutamine symbiosis. The luminal-specific expression of GS is directly induced GATA3 and down-regulates glutaminase expression to maintain subtype-specific glutamine metabolism. Collectively, these data indicate the distinct glutamine phenotypes among breast cells and enable the rational design of glutamine targeted therapies.
Project description:To understand the effects of glutamine deprivation on cell physiology we performed global analysis of gene expression in response to glutamine deprivation. U2OS cells were subjected to glutamine deprivation for 24h followed by RNA extraction and microarray analysis.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:To understand the effects of glutamine deprivation on cell physiology we performed global analysis of gene expression in response to glutamine deprivation. U2OS cells were subjected to glutamine deprivation for 24h followed by RNA extraction and microarray analysis. U2OS cells were plated overnight followed by treatment for 24h with glutamine-containing and glutamine-depleted media. Three biological replicates were assayed for each condition.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.
Project description:Analysis of ovarian cancer cell line HeyA8 coculturing with cancer associated fibroblasts at gene expression level. The hypothesis test in this study is to show that cancer associated fibroblasts can influence the gene expression of HeyA8 under glutamine deprivation condition. Results provide important information of the response of HeyA8 when coculturing with cancer associated fibroblasts under glutamine deprivation, such as cell proliferation, apoptosis