Project description:Specific histone modifications play important roles in chromatin functions such as activation or repression of gene transcription. These participation must occur as a dynamic process, however, most of histone modification state maps reported to date only provide static pictures linking certain modification with active or silenced states. This study focused on the global histone modification variation that occurs in response to transcriptional reprogramming produced by a physiological perturbation in yeast. We have performed genome-wide chromatin immunoprecipitation analysis for eight specific histone modifications before and after of a saline stress. The most striking change is a quick deacetylation of lysines 9 and 14 of H3 and lysine 8 of H4 associated to repression of genes. Genes that are activated increase the acetylation levels at these same sites, but this acetylation process of activated genes seems minor quantitatively to that of the deacetylation of repressed genes. The observed changes in tri-methylation of lysines 4, 36 and 79 of H3 and also di-methylation of lysine 79 of H3 are much more moderate than those of acetylation. Additionally, we have produced new genome-wide maps for six histone modifications at more than five times higher resolution of previous available data and analyzed for the first time in S. cerevisiae genome wide profiles of two more, acetylation of lysine 8 of H4 and di-methylation of lysine 79 of H3. In this research we have shown that dynamic of acetylation state of histones during activation or repression of transcription is a process much quicker than methylation and therefore the changes produced in the acetylation may affect methylation but the reverse path is not possible.
Project description:Specific histone modifications play important roles in chromatin functions such as activation or repression of gene transcription. These participation must occur as a dynamic process, however, most of histone modification state maps reported to date only provide static pictures linking certain modification with active or silenced states. This study focused on the global histone modification variation that occurs in response to transcriptional reprogramming produced by a physiological perturbation in yeast. We have performed genome-wide chromatin immunoprecipitation analysis for eight specific histone modifications before and after of a saline stress. The most striking change is a quick deacetylation of lysines 9 and 14 of H3 and lysine 8 of H4 associated to repression of genes. Genes that are activated increase the acetylation levels at these same sites, but this acetylation process of activated genes seems minor quantitatively to that of the deacetylation of repressed genes. The observed changes in tri-methylation of lysines 4, 36 and 79 of H3 and also di-methylation of lysine 79 of H3 are much more moderate than those of acetylation. Additionally, we have produced new genome-wide maps for six histone modifications at more than five times higher resolution of previous available data and analyzed for the first time in S. cerevisiae genome wide profiles of two more, acetylation of lysine 8 of H4 and di-methylation of lysine 79 of H3. In this research we have shown that dynamic of acetylation state of histones during activation or repression of transcription is a process much quicker than methylation and therefore the changes produced in the acetylation may affect methylation but the reverse path is not possible. The experiments described in this study compare ChIP with a histone modification antibody to a control ChIP with a core histone antibody. Budding yeast samples were analyzed in exponential growing conditions (YPD) or after 10 minutes of 0.4M NaCl stress. For each experiment 1 or 2 biological replicates were performed.
Project description:The Mediator complex transmits activation signals from DNA bound transcription factors to the core transcription machinery. Genome wide localization studies have demonstrated that Mediator occupancy not only correlates with high levels of transcription, but that the complex also is present at transcriptionally silenced locations. We provide evidence that Mediator localization is guided by an interaction with histone tails, and that this interaction is regulated by their post-translational modifications. A quantitative, high-density genetic interaction map revealed links between Mediator components and factors affecting chromatin structure, especially histone deacetylases. Peptide binding assays demonstrated that pure wild type Mediator forms stable complexes with the tails of Histone H3 and H4. These binding assays also showed Mediator – histone H4 peptide interactions are specifically inhibited by acetylation of the histone H4 lysine 16, a residue critical in transcriptional silencing. Finally, these findings were validated by tiling array analysis, that revealed a broad correlation between Mediator and nucleosome occupancy in vivo, but a negative correlation between Mediator and nucleosomes acetylated at histone H4 lysine 16. Our studies show that chromatin structure and the acetylation state of histones are intimately connected to Mediator localization. Med8-TAP strain ChIPed with IgG beads vs. Input in Saccharomyces cerevisiae
Project description:The Mediator complex transmits activation signals from DNA bound transcription factors to the core transcription machinery. Genome wide localization studies have demonstrated that Mediator occupancy not only correlates with high levels of transcription, but that the complex also is present at transcriptionally silenced locations. We provide evidence that Mediator localization is guided by an interaction with histone tails, and that this interaction is regulated by their post-translational modifications. A quantitative, high-density genetic interaction map revealed links between Mediator components and factors affecting chromatin structure, especially histone deacetylases. Peptide binding assays demonstrated that pure wild type Mediator forms stable complexes with the tails of Histone H3 and H4. These binding assays also showed Mediator – histone H4 peptide interactions are specifically inhibited by acetylation of the histone H4 lysine 16, a residue critical in transcriptional silencing. Finally, these findings were validated by tiling array analysis, that revealed a broad correlation between Mediator and nucleosome occupancy in vivo, but a negative correlation between Mediator and nucleosomes acetylated at histone H4 lysine 16. Our studies show that chromatin structure and the acetylation state of histones are intimately connected to Mediator localization.
Project description:Histone H3 lysine 4 tri-methylation (H3K4me3) is a hallmark of transcription initiation, but how H3K4me3 is demethylated during gene repression is poorly understood. Jhd2, a JmjC domain protein, was recently identified as the major H3K4me3 histone demethylase (HDM) in S. cerevisiae. While JHD2 is required for removal of methylation upon gene repression, deletion of JHD2 does not result in increased levels of H3K4me3 in bulk histones, indicating that this HDM is unable to demethylate histones during steady state conditions. In this study, we showed that this was due to the negative regulation of Jhd2 activity by histone H3 lysine 14 acetylation, which co-localizes with H3K4me3 across the yeast genome. We demonstrated that loss of the histone H3-specific acetyltransferases (HATs) resulted in genome-wide-depletion of H3K4me3, and this was not due to a transcription defect. Moreover, H3K4me3 levels were reestablished in HAT mutants following loss of JHD2, which suggested that H3-specific HATs and Jhd2 served opposing functions in regulating H3K4me3 levels. We revealed the molecular basis for this suppression by demonstrating that histone H3K14 acetylation negatively regulated Jhd2 demethylase activity on an acetylated peptide in vitro. These results revealed the existence of a general mechanism for removal of H3K4me3 following gene repression. Examination of H3K4me3 in WT, ada2sas3, ada2sas3jhd2, and jhd2 strains.
Project description:Histone H3 lysine 4 tri-methylation (H3K4me3) is a hallmark of transcription initiation, but how H3K4me3 is demethylated during gene repression is poorly understood. Jhd2, a JmjC domain protein, was recently identified as the major H3K4me3 histone demethylase (HDM) in S. cerevisiae. While JHD2 is required for removal of methylation upon gene repression, deletion of JHD2 does not result in increased levels of H3K4me3 in bulk histones, indicating that this HDM is unable to demethylate histones during steady state conditions. In this study, we showed that this was due to the negative regulation of Jhd2 activity by histone H3 lysine 14 acetylation, which co-localizes with H3K4me3 across the yeast genome. We demonstrated that loss of the histone H3-specific acetyltransferases (HATs) resulted in genome-wide-depletion of H3K4me3, and this was not due to a transcription defect. Moreover, H3K4me3 levels were reestablished in HAT mutants following loss of JHD2, which suggested that H3-specific HATs and Jhd2 served opposing functions in regulating H3K4me3 levels. We revealed the molecular basis for this suppression by demonstrating that histone H3K14 acetylation negatively regulated Jhd2 demethylase activity on an acetylated peptide in vitro. These results revealed the existence of a general mechanism for removal of H3K4me3 following gene repression.
Project description:<p>In this study we profile the epigenomic enhancer landscapes of CLL B cells (CD19+/CD5+) harvested from peripheral blood of patients from our Center. Included are results of ChIPseq profiling using chromatin immunoprecipitation of the enhancer histone mark H3K27ac (acetylated lysine 27 on histone H3), and open chromatin profiles using ATAC-seq (assay for transposase accessible chromatin). These profiles are used to define the global enhancer and super enhancer landscape of CLL B cells, and to derive active transcription factor networks associated with this disease. Also included are H3K27ac ChIP-seq and ATAC-seq datasets for non-CLL B cells obtained from the peripheral blood of normal adult donors.</p>
Project description:Pluripotency of embryonic stem (ES) cells is controlled in part by chromatin-modifying factors that regulate histone H3 lysine 4 (H3K4) methylation. However, it remains unclear how H3K4 demethylation contributes to ES cell function. Here, we show that KDM5B, which demethylates lysine 4 of histone H3, co-localizes with H3K4me3 near promoters and enhancers of active genes in ES cells; its depletion leads to spreading of H3K4 methylation into gene bodies and enhancer shores, indicating that KDM5B functions to focus H3K4 methylation at promoters and enhancers. Spreading of H3K4 methylation to gene bodies and enhancer shores is linked to defects in gene expression programs and enhancer activity, respectively, during self-renewal and differentiation of KDM5B-depleted ES cells. KDM5B critically regulates H3K4 methylation at bivalent genes during differentiation in the absence of LIF or Oct4. We also show that KDM5B and LSD1, another H3K4 demethylase, co-regulate H3K4 methylation at active promoters but they retain distinct roles in demethylating gene body regions and bivalent genes. Our results provide global and functional insight into the role of KDM5B in regulating H3K4 methylation marks near promoters, gene bodies, and enhancers in ES cells and during differentiation. RNA-Seq of murine shLuc and shKdm5b ES cells differentiated for 72h in the absence of LIF.