Project description:The transcriptome of mouse limb buds of Shh mutant embryos was compared to the transcriptome of limb buds of wild type embryos at embryonic day E10.5
Project description:The transcriptome of the anterior handplates of mouse limb buds of Gli3 constitutive and Hoxa13-Cre Gli3 conditional mutant embryos was compared to the transcriptome of limb buds of wild type and Gli3 heterozygote embryos at embryonic day E11.75. All samples carried one copy of the Hoxa13-Cre allele.
Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility.
Project description:The basic helix-loop-helix transcription factor Twist1 has a well-documented role in mesenchymal populations of the developing embryo, such as endocardial cushion (ECC) mesenchymal cells and limb buds, and during cancer development and progression. Whether Twist1 regulates the same transcriptional targets in different cell types has yet to be investigated. Through chromatin immunoprecipitation followed by sequencing (Chip-seq) analysis, the cell type-specific genome-wide occupancy of Twist1 was investigated in ECCs, limb buds and mouse peripheral nerve sheath tumor (PNST) cells. Twist1 binds mainly in a cell type-specific manner, with very few common genomic regions occupied by Twist1 in different cell types. Genes associated with binding peaks in each cell type are related to known Twist1 cellular functions in ECCs, limb buds, and cancer cells. We found that cell type-specific binding of Twist1 may be influenced by histone modifications or co-factors. Binding regions were located in several Wnt pathway associated genes, supporting a link between Twist1 and Wnt signalling in ECCs, limb buds, and PNST cells. These data suggest that similar functions are regulated by Twist1 in ECCs, limb buds, and PNST cells in a cell type-specific manner, and provide insights into possible mechanisms utilized for cell type-specificity of Twist1 binding. We compare Twist1 genome occupancy in mouse embryonic day (E) 12.5 endocardial cushion mesenchymal cells, E10.5 forelimb buds, and a mouse peripheral nerve sheath tumor cell line.
Project description:We report time-series transcriptome of developing bamboo shark fin buds and mouse forelimb buds, and open chromatin regions of developing mouse forelimb buds. The major contributions of this study are 1) transcriptomic data with an accurate orthology map for a systematic comparison between the two species; 2) high quality chromatin accessibility data for mouse limb development; 3) discovery of mass heterochronic genes between fins and limbs; 4) hourglass-shaped conservation between fins and limbs, providing insights into a general trend of gene regulatory evolution.