Project description:Analysis of ex vivo isolated lymphatic endothelial cells from the dermis of patients to define type 2 diabetes-induced changes. Results preveal aberrant dermal lymphangiogenesis and provide insight into its role in the pathogenesis of persistent skin inflammation in type 2 diabetes. The ex vivo dLEC transcriptome reveals a dramatic influence of the T2D environment on multiple molecular and cellular processes, mirroring the phenotypic changes seen in T2D affected skin. The positively and negatively correlated dLEC transcripts directly cohere to prolonged inflammatory periods and reduced infectious resistance of patients´ skin. Further, lymphatic vessels might be involved in tissue remodeling processes during T2D induced skin alterations associated with impaired wound healing and altered dermal architecture. Hence, dermal lymphatic vessels might be directly associated with T2D disease promotion.
Project description:Analysis of ex vivo isolated lymphatic endothelial cells from the dermis of patients to define type 2 diabetes-induced changes. Results preveal aberrant dermal lymphangiogenesis and provide insight into its role in the pathogenesis of persistent skin inflammation in type 2 diabetes. The ex vivo dLEC transcriptome reveals a dramatic influence of the T2D environment on multiple molecular and cellular processes, mirroring the phenotypic changes seen in T2D affected skin. The positively and negatively correlated dLEC transcripts directly cohere to prolonged inflammatory periods and reduced infectious resistance of patients´ skin. Further, lymphatic vessels might be involved in tissue remodeling processes during T2D induced skin alterations associated with impaired wound healing and altered dermal architecture. Hence, dermal lymphatic vessels might be directly associated with T2D disease promotion. Global gene expression profile of normal dermal lymphatic endothelial cells (ndLECs) compared to dermal lymphatic endothelial cells derived from type 2 diabetic patients (dLECs).Quadruplicate biological samples were analyzed from human lymphatic endothelial cells (4 x diabetic; 4 x non-diabetic). subsets: 1 disease state set (dLECs), 1 control set (ndLECs)
Project description:Transcriptional profiling of Homo sapiens inflammatory skin diseases (whole skin biospies): Psoriasis (Pso), vs Atopic Dermatitis (AD) vs Lichen planus (Li), vs Contact Eczema (KE), vs Healthy control (KO) In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation. In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Systemic sclerosis (SSc) is characterized by vascular damage, autoimmunity and fibrosis and is associated with highly variable clinical presentation and disease course. Aberrant transforming growth factor-ß (TGF-ß) signaling via the early immediate transcription factor Egr-1 is implicated in the pathogenesis of SSc. To shed light on the role of Egr-1 in fibrosis, regulation of gene expression in human skin fibroblasts overexpressing Egr-1 was examined by genome-wide expression analysis. Over 600 genes were found to be regulated by Egr-1. The Egr-1-responsive gene signature is largely comprised of genes involved in cell proliferation, TGF-ß signaling, wound healing, extracellular matrix synthesis and vascular development. Expression of the Egr-1 responsive genes was evaluated in a microarray dataset comprising skin biopsies from 17 patients with scleroderma and six healthy controls (GEO GSE9285; PMID 18648520). The “Egr-1 responsive gene signature” was enriched in the ‘diffuse-proliferation’ subset of skin biopsies in the patients with diffuse cutaneous SSc (dcSSc), but was not associated with other forms of scleroderma, or with healthy controls. Skin biopsies from patients with scleroderma can provide more insights into the relevant pathological processes in the subset of disease and could be developed into a diagnostic tool for identifying a subset of diffuse scleroderma patients who may be responsive to Egr-1 therapy. Cultures of primary fibroblasts from neonatal foreskin treated by Egr1 and Tgfb1 were measured at 24 and 48 hours. Control samples without any treatment were also measured at the same time points. Two biological replicates per condition/time point were measured using the Illumina HumanRef-8 V2 Expression BeadChip.
Project description:Systemic sclerosis (SSc) is characterized by vascular damage, autoimmunity and fibrosis and is associated with highly variable clinical presentation and disease course. Aberrant transforming growth factor-ß (TGF-ß) signaling via the early immediate transcription factor Egr-1 is implicated in the pathogenesis of SSc. To shed light on the role of Egr-1 in fibrosis, regulation of gene expression in human skin fibroblasts overexpressing Egr-1 was examined by genome-wide expression analysis. Over 600 genes were found to be regulated by Egr-1. The Egr-1-responsive gene signature is largely comprised of genes involved in cell proliferation, TGF-ß signaling, wound healing, extracellular matrix synthesis and vascular development. Expression of the Egr-1 responsive genes was evaluated in a microarray dataset comprising skin biopsies from 17 patients with scleroderma and six healthy controls (GEO GSE9285; PMID 18648520). The “Egr-1 responsive gene signature” was enriched in the ‘diffuse-proliferation’ subset of skin biopsies in the patients with diffuse cutaneous SSc (dcSSc), but was not associated with other forms of scleroderma, or with healthy controls. Skin biopsies from patients with scleroderma can provide more insights into the relevant pathological processes in the subset of disease and could be developed into a diagnostic tool for identifying a subset of diffuse scleroderma patients who may be responsive to Egr-1 therapy.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.