Project description:FACT mediates cohesin function on chromatin Cohesin is a key regulator of genome architecture with roles in sister chromatid cohesion and the organisation of higher-order structures during interphase and mitosis. The recruitment and mobility of cohesin complexes on DNA are restricted by nucleosomes. Here we show that cohesin role in chromosome organization requires the histone chaperone FACT. Depletion of FACT in metaphase cells affects cohesin stability on chromatin reducing its accumulation at pericentric regions and binding on chromosome arms. Using Hi-C, we show that cohesin-dependent TAD (Topological Associated Domains)-like structures in G1 and metaphase chromosomes are disrupted in the absence of FACT. Surprisingly, sister chromatid cohesion is intact in FACT-depleted cells, although chromosome segregation failure is observed. Our results uncover a role for FACT in genome organisation by facilitating cohesin dependent compartmentalization of chromosomes into loop domains.
Project description:The ring-like cohesin complex plays an essential role in chromosome segregation, organization, and double-strand break repair through its ability to bring two DNA double helices together. Scc2 (NIPBL in humans) together with Scc4 function as the loader of cohesin onto chromosomes. Chromatin adapters such as the RSC complex facilitate localization of the Scc2-Scc4 cohesin loader. Here we identify a broad range of Scc2- chromatin protein interactions that are evolutionarily conserved and reveal a role for one complex, Mediator, in recruitment of the cohesin loader. We identified budding yeast Med14, a subunit of the Mediator complex, as a high copy suppressor of poor growth in Scc2 mutant strains. Physical and genetic interactions between Scc2 and Mediator are functionally substantiated in direct recruitment and cohesion assays. Depletion of Med14 results in defective sister chromatid cohesion and decreased binding of Scc2 at RNA Pol II transcribed genes. Previous work has suggested that Mediator, Nipbl, and cohesin connect enhancers and promoters of active mammalian genes. Our studies suggest an evolutionarily conserved fundamental role for Mediator in direct recruitment of Scc2 to RNA pol II transcribed genes. We identified two mutations in the evolutionarily conserved HEAT domain of SCC2 that result in significantly reduced growth, scc2R787G and scc2G1242V. This experiment uses ChIP Seq to examine global localization of Scc2 in the presence or absence of MED14.
Project description:Aneuploidy and aging are correlated; however, a causal link between these two phenomena has remained elusive. Here we show that yeast disomic for a single native yeast chromosome generally have a decreased replicative lifespan. In addition, the extent of this lifespan deficit correlates with the size of the extra chromosome. We identified a mutation in BUL1 that rescues both the lifespan deficit and a protein trafficking defect in yeast disomic for chromosome 5. Bul1 is an E4 ubiquitin ligase adaptor involved in a protein quality-control pathway that targets membrane proteins for endocytosis and destruction in the lysosomal vacuole thereby maintaining protein homeostasis. Concurrent suppression of the aging and trafficking phenotypes suggests that disrupted membrane protein homeostasis in aneuploid yeast may contribute to their accelerated aging. The data reported here demonstrate that aneuploidy can impair protein homeostasis, shorten lifespan, and may contribute to age-associated phenotypes.
Project description:The ring-like cohesin complex plays an essential role in chromosome segregation, organization, and double-strand break repair through its ability to bring two DNA double helices together. Scc2 (NIPBL in humans) together with Scc4 function as the loader of cohesin onto chromosomes. Chromatin adapters such as the RSC complex facilitate localization of the Scc2-Scc4 cohesin loader. Here we identify a broad range of Scc2- chromatin protein interactions that are evolutionarily conserved and reveal a role for one complex, Mediator, in recruitment of the cohesin loader. We identified budding yeast Med14, a subunit of the Mediator complex, as a high copy suppressor of poor growth in Scc2 mutant strains. Physical and genetic interactions between Scc2 and Mediator are functionally substantiated in direct recruitment and cohesion assays. Depletion of Med14 results in defective sister chromatid cohesion and decreased binding of Scc2 at RNA Pol II transcribed genes. Previous work has suggested that Mediator, Nipbl, and cohesin connect enhancers and promoters of active mammalian genes. Our studies suggest an evolutionarily conserved fundamental role for Mediator in direct recruitment of Scc2 to RNA pol II transcribed genes. We identified two mutations in the evolutionarily conserved HEAT domain of SCC2 that result in significantly reduced growth, scc2R787G and scc2G1242V. This experiment uses RNA-Seq analysis to study the effect of these mutations on gene expression.
Project description:The ring-like cohesin complex plays an essential role in chromosome segregation, organization, and double-strand break repair through its ability to bring two DNA double helices together. Scc2 (NIPBL in humans) together with Scc4 function as the loader of cohesin onto chromosomes. Chromatin adapters such as the RSC complex facilitate localization of the Scc2-Scc4 cohesin loader. Here we identify a broad range of Scc2- chromatin protein interactions that are evolutionarily conserved and reveal a role for one complex, Mediator, in recruitment of the cohesin loader. We identified budding yeast Med14, a subunit of the Mediator complex, as a high copy suppressor of poor growth in Scc2 mutant strains. Physical and genetic interactions between Scc2 and Mediator are functionally substantiated in direct recruitment and cohesion assays. Depletion of Med14 results in defective sister chromatid cohesion and decreased binding of Scc2 at RNA Pol II transcribed genes. Previous work has suggested that Mediator, Nipbl, and cohesin connect enhancers and promoters of active mammalian genes. Our studies suggest an evolutionarily conserved fundamental role for Mediator in direct recruitment of Scc2 to RNA pol II transcribed genes. We identified two mutations in the evolutionarily conserved HEAT domain of SCC2 that result in significantly reduced growth, scc2R787G and scc2G1242V. This experiment uses RNA-Seq analysis to study the effect of these mutations on gene expression.
Project description:Aneuploidy and aging are correlated; however, a causal link between these two phenomena has remained elusive. Here we show that yeast disomic for a single native yeast chromosome generally have a decreased replicative lifespan. In addition, the extent of this lifespan deficit correlates with the size of the extra chromosome. We identified a mutation in BUL1 that rescues both the lifespan deficit and a protein trafficking defect in yeast disomic for chromosome 5. Bul1 is an E4 ubiquitin ligase adaptor involved in a protein quality-control pathway that targets membrane proteins for endocytosis and destruction in the lysosomal vacuole thereby maintaining protein homeostasis. Concurrent suppression of the aging and trafficking phenotypes suggests that disrupted membrane protein homeostasis in aneuploid yeast may contribute to their accelerated aging. The data reported here demonstrate that aneuploidy can impair protein homeostasis, shorten lifespan, and may contribute to age-associated phenotypes. These are all CGH arrays comparing DNA content between the indicated strain of interest and a wt control.