Project description:Auxin is a major plant hormone for both development and environmental adaptation. Auxin responses are context dependent and highly modulated by light, temperature, the circadian clock, brassinosteroid, and gibberellin, but the underlying mechanisms remain unclear. Here, we show that auxin signaling integrates with other signals through direct interactions of AUXIN RESPONSE FACTOR6 (ARF6) with PHYTOCHROME INTERACTING FACTOR4 (PIF4), the brassinosteroid-signaling transcription factor BZR1, and the gibberellin-signaling repressor RGA. ChIP-Seq and RNA-Seq experiments show that ARF6, PIF4, and BZR1 bind to largely overlapping targets in the genome and synergistically activate gene expression. In vitro and in vivo assays show that ARF6-promoter binding is enhanced by PIF4 and BZR1 but blocked by RGA. Furthermore, a tripartite HLH/bHLH module feedback regulates PIF activity and thus modulates auxin sensitivity according to additional developmental and environmental cues. Our results demonstrate a central growth-regulation transcriptional network that coordinates hormonal, environmental, and developmental control of cell elongation and plant growth. Genome-wide identification of ARF6 DNA-binding sites in etiolated Arabidopsis seedlings.
Project description:Auxin is a major plant hormone for both development and environmental adaptation. Auxin responses are context dependent and highly modulated by light, temperature, the circadian clock, brassinosteroid, and gibberellin, but the underlying mechanisms remain unclear. Here, we show that auxin signaling integrates with other signals through direct interactions of AUXIN RESPONSE FACTOR6 (ARF6) with PHYTOCHROME INTERACTING FACTOR4 (PIF4), the brassinosteroid-signaling transcription factor BZR1, and the gibberellin-signaling repressor RGA. ChIP-Seq and RNA-Seq experiments show that ARF6, PIF4, and BZR1 bind to largely overlapping targets in the genome and synergistically activate gene expression. In vitro and in vivo assays show that ARF6-promoter binding is enhanced by PIF4 and BZR1 but blocked by RGA. Furthermore, a tripartite HLH/bHLH module feedback regulates PIF activity and thus modulates auxin sensitivity according to additional developmental and environmental cues. Our results demonstrate a central growth-regulation transcriptional network that coordinates hormonal, environmental, and developmental control of cell elongation and plant growth.
Project description:We describe a new mutant allele of the ACTIN2 gene with enhanced actin dynamics, displaying a broad array of twisting and bending phenotypes that resemble BR-treated plants. Moreover, auxin transcriptional regulation is enhanced on the mutant background, supporting the idea that shaping actin filaments is sufficient to modulate BR-mediated auxin responsiveness. The actin cytoskeleton thus functions as a scaffold for integration of auxin and BR signaling pathways.
Project description:We describe a new mutant allele of the ACTIN2 gene with enhanced actin dynamics, displaying a broad array of twisting and bending phenotypes that resemble BR-treated plants. Moreover, auxin transcriptional regulation is enhanced on the mutant background, supporting the idea that shaping actin filaments is sufficient to modulate BR-mediated auxin responsiveness. The actin cytoskeleton thus functions as a scaffold for integration of auxin and BR signaling pathways. Three biological replicates were performed for each sample (wild-type and actin2-5) and hybridized to the the Affymetrix ATH1 GeneChips.
Project description:Auxin is a major plant hormone for both development and environmental adaptation. Auxin responses are context dependent and highly modulated by light, temperature, the circadian clock, brassinosteroid, and gibberellin, but the underlying mechanisms remain unclear. Here, we show that auxin signaling integrates with other signals through direct interactions of AUXIN RESPONSE FACTOR6 (ARF6) with PHYTOCHROME INTERACTING FACTOR4 (PIF4), the brassinosteroid-signaling transcription factor BZR1, and the gibberellin-signaling repressor RGA. ChIP-Seq and RNA-Seq experiments show that ARF6, PIF4, and BZR1 bind to largely overlapping targets in the genome and synergistically activate gene expression. In vitro and in vivo assays show that ARF6-promoter binding is enhanced by PIF4 and BZR1 but blocked by RGA. Furthermore, a tripartite HLH/bHLH module feedback regulates PIF activity and thus modulates auxin sensitivity according to additional developmental and environmental cues. Our results demonstrate a central growth-regulation transcriptional network that coordinates hormonal, environmental, and developmental control of cell elongation and plant growth. Seedlings (Col-0 and iaa3) were grown on medium containing 2 µM propiconazole (PPZ) in the dark for 5 days and treated with mock or 100 nM BL for 4 hr before harvesting for total RNA extraction.
Project description:Auxin is a major plant hormone for both development and environmental adaptation. Auxin responses are context dependent and highly modulated by light, temperature, the circadian clock, brassinosteroid, and gibberellin, but the underlying mechanisms remain unclear. Here, we show that auxin signaling integrates with other signals through direct interactions of AUXIN RESPONSE FACTOR6 (ARF6) with PHYTOCHROME INTERACTING FACTOR4 (PIF4), the brassinosteroid-signaling transcription factor BZR1, and the gibberellin-signaling repressor RGA. ChIP-Seq and RNA-Seq experiments show that ARF6, PIF4, and BZR1 bind to largely overlapping targets in the genome and synergistically activate gene expression. In vitro and in vivo assays show that ARF6-promoter binding is enhanced by PIF4 and BZR1 but blocked by RGA. Furthermore, a tripartite HLH/bHLH module feedback regulates PIF activity and thus modulates auxin sensitivity according to additional developmental and environmental cues. Our results demonstrate a central growth-regulation transcriptional network that coordinates hormonal, environmental, and developmental control of cell elongation and plant growth.
Project description:AUXIN RESPONSE FACTOR3 Integrates the Functions of AGAMOUS and Auxin to Repress Cytokinin Biosynthesis and Signaling in Floral Meristem Determinacy