Project description:Lactococcus lactis is the main bacterium used for food fermentation and is a candidate for probiotic development. In addition to fermentation growth, supplementation with heme in aerobic conditions activates a cytochrome oxidase, which promotes respiration metabolism. In contrast to fermentation in which cells consume energy to produce mainly lactic acid, respiration metabolism dramatically changes energy metabolism, such that massive amounts of acetic acid and acetoin are produced at the expense of lactic acid. Our goal was to investigate the metabolic changes that correlate with significantly improved growth and survival during respiration growth. Using transcriptional time course analyses, mutational analyses, and promoter reporter fusions, we uncover two main pathways that can explain the robust growth and stability of respiration cultures: The acetate pathway contributes to biomass yield in respiration, without affecting medium pH. The acetoin pathway allows cells to cope with internal acidification, which directly affects cell density and survival in stationary phase. Our results suggest that manipulation of these pathways could lead to fine tuning respiration growth, with improved yield and stability.
Project description:Staphylococcus aureus is an important food poisoning bacterium. In food preservation, acidification is a well-known method. Permeant weak organic acids, like lactic and acetic acids, are known to be more effective against bacteria than inorganic strong acids (e.g., HCl). Growth experiments and metabolic and transcriptional analyses were used to determine the responses of a food pathogenic S. aureus strain exposed to lactic acid, acetic acid, and HCl at pH 4.5. Lactic and acetic acid stress induced a slower transcriptional response and large variations in growth patterns compared with the responses induced by HCl. In cultures acidified with lactic acid, the pH of the medium gradually increased to 7.5 during growth, while no such increase was observed for bacteria exposed to acetic acid or HCl. Staphylococcus aureus increased the pH in the medium mainly through accumulation of ammonium and the removal of acid groups, resulting in increased production of diacetyl (2,3-butanedione) and pyrazines. The results showed flexible and versatile responses of S. aureus to different types of acid stress. As measured by growth inhibition, permeant organic acid stress introduced severe stress compared with the stress caused by HCl. Cells exposed to lactic acid showed specific mechanisms of action in addition to sharing many of the mechanisms induced by HCl stress. Data is also available from http://bugs.sgul.ac.uk/E-BUGS-87
Project description:In this study, we performed an RNA-Seq transcriptomic analysis concerning acetic acid bacteria’s acid resistance mechanisms during a continuous and periodical industrial submerged vinegar fermentation process, where the acetic acid concentration fluctuates between ~8% and ~12%
Project description:Many food fermentations are carried out by mixed cultures of lactic acid bacteria. Interactions between strains are of key importance for the performance of these fermentations. Yoghurt fermentation by Streptoccus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus (L.bulgaricus) is one of the best-described mixed culture fermentations. These species stimulate each other’s growth by the exchange of metabolites such as folic acid and carbon dioxide. Recently, post-genomic studies have been applied to reveal the global physiological response to mixed culture growth in S. thermophilus, but an in-depth molecular analysis of mixed culture growth of both strains remains to be established. Here we report the application of mixed culture transcriptome profiling and a systematic analysis of candidate interaction compounds on growth, which allowed the unraveling of the molecular responses associated with co-culture growth in batch of S. thermophilus CNRZ1066 and L. bulgaricus ATCC BAA-365 in milk. Comparisons of mono cultures versus mixed cultures, at four time-points in batch fermentation, and comparisons between the four time-points within each fermentation, all in duplicate
Project description:High concenHigh concentration acetic acid in the fermentation medium represses cell growth, metabolism and fermentation efficiency of Saccharomyces cerevisiae, which is widely used for cellulosic ethanol production. Our previous study proved that supplementation of zinc sulfate in the fermentation medium improved cell growth and ethanol fermentation performance of S. cerevisiae under acetic acid stress condition. However, the molecular mechanisms is still unclear. To explore the underlying mechanism of zinc sulfate protection against acetic acid stress, transcriptomic and proteomic analysis were performed. The changed genes and proteins are related to carbon metabolism, amino acid biosynthesis, energy metabolism, vitamin biosynthesis and stress responses. In a total, 28 genes showed same expression in transcriptomic and proteomic data, indicating that zinc sulfate affects gene expression at posttranscriptional and posttranslational levels.tration acetic acid in the fermentation medium represses cell growth, metabolism and fermentation efficiency of Saccharomyces cerevisiae, which is widely used for cellulosic ethanol production. Our previous study proved that supplementation of zinc sulfate in the fermentation medium improved cell growth and ethanol fermentation performance of S. cerevisiae under acetic acid stress condition. However, the molecular mechanisms is still unclear. To explore the underlying mechanism of zinc sulfate protection against acetic acid stress, transcriptomic and proteomic analysis were performed. The changed genes and proteins are related to carbon metabolism, amino acid biosynthesis, energy metabolism, vitamin biosynthesis and stress responses. In a total, 28 genes showed same expression in transcriptomic and proteomic data, indicating that zinc sulfate affects gene expression at posttranscriptional and posttranslational levels.
Project description:Comparative phenotype and transcriptome analyses were performed with Bacillus cereus ATCC 14579 exposed to acid down-shock to pH 5.5 set with different acidulants. When acidified with hydrochloric acid (HCl), growth was diminished, whereas 2 mM undissociated lactic acid (HL) or acetic acid (HAc) stopped growth without inactivation (bacteriostatic condition), and 15 mM undissociated HAc caused growth arrest and, finally, cell death, as reflected by a 3 to 4 log inactivation (bactericidal condition). Within the first 60 min after pH down-shock, the intracellular ATP levels of cultures shocked with HCl were increased. The bacteriostatic pH shocks did not result in increased nor decreased intracellular ATP levels, indicating that the high energy status within the stressed aerobically grown B. cereus cells could be maintained. In contrast, exposure to 15 mM undissociated HAc resulted in significant lower ATP levels, which was in accordance with the observed inactivation. The transcriptomic responses pH down-shocked cultures were studied in the same time frame. The analyses revealed general and specific responses coupled to the different phenotypes and the acidulant used. The general acid stress response, shown in all different pH shocks, involves modulation of pyruvate metabolism and an oxidative stress response. The shifts in pyruvate metabolism include induction dehydrogenases of a butanediol fermentation pathway under non-lethal acid stress conditions and of lactate, formate, and ethanol fermentation pathways under 15 mM HAc stress. Other 15 mM HAc-specific responses were induction of the alternative electron-transport systems, including cydAB, and fatty acid biosynthesis genes. Differences in gene expression for the bacteriostatic organic acid stress conditions compared to the growth-retarded inorganic stress condition indicated a more stringent oxidative stress response, including induction of an additional catalase gene and a gene encoding a Dps-like protein. Moreover, modulations in amino acid and oligopeptide transport were also found for the 2 mM HAc and HL shocks. HL-specific and HAc-specific responses both involve amino acid metabolism. Our study on the genome-wide responses of aerobically grown B. cereus pH 5.5 shocks provides a unique overview of the different responses induced by three acidulants relevant for food preservation. Per acid down-shock three exposure times (i.e., 10, 30 and 60 min) were each compared with non-exposed cells (i.e., t0). In total 4 different pH 5.5 acid down-shocks were applied. pH 5.5 was reached by adding different acidulants i.e., hydrochloric acid (HCl), lactic acid (HL) resulting in 2 mM undissociated HL, acetic acid (HAc) resulting in 15 mM undissociated HAc, and a combination of acetic acid and hydrochloric acid (HAc/HCl) resulting in 2 mM undissociated HAc. The experiments were performed in duplicate and the duplicate samples were hybridised with a dye-swap.
Project description:Enzymes' uncharacterised side activities can have significant effects on reaction products and yields. Hence, their identification and characterisation are crucial for the development of successful reaction systems. Here, we report the presence of feruloyl esterase activity in CtXyn5A from Acetivibrio thermocellus, besides its well-known arabinoxylanase activity, for the first time. Activity analysis of enzyme variants mutated in the catalytic nucleophile, Glu279, confirmed removal of all activity for E279A and E279L, and increased esterase activity while removing xylanase activity for E279S, thus allowing the proposal that both reaction types are catalysed in the same active site in two subsequential steps. The ferulic acid substituent is cleaved off first, followed by hydrolysis of the xylan backbone. The esterase activity on complex carbohydrates was found to be higher than that of a designated ferulic acid esterase (E-FAERU). Therefore, we conclude that the enzyme exhibits a dual function rather than an esterase side activity.
Project description:Two-stage two-phase biogas reactor systems consisting each of one batch downflow hydrolysis reactor (HR, vol. 10 L), one process fluid storage tank (vol. 10 L), and one downstream upflow anaerobic filter reactor (AF, vol. 10 L), were operated at mesophilic (M, 37 °C) and thermophilic (T, 55 °C) temperatures and over a period of > 750 d (Figure 1, Additional file 1). For each reactor system and for each process temperature, two replicates were conducted in parallel, denominated further as biological replicates. Further process details were as previously published. Start-up of all fermenters were performed using liquid fermenter material from a biogas plant converting cattle manure in co-digestion with grass and maize silage and other biomass at varying concentrations and at mesophilic temperatures. Silage of perennial ryegrass (Lolium perenne L.) was digested as sole substrate in batches of varying amounts with retention times of 28 d (storage of bale silage at -20 °C, cutting length 3 cm, volatile substances (VS) 32 % of fresh mass (FM), total Kjeldahl nitrogen 7.6 g kgFM-1, NH4+-N 0.7 g kgFM-1, acetic acid 2.6 g kgFM-1, propionic acid < 0.04 g kgFM-1, lactic acid 2.6 g kgFM-1, ethanol 2.2 g kgFM-1, C/N ratio 19.3, chemical oxygen demand (COD) 357.7 g kgFM-1, analysis of chemical properties according to [6]. No spoilage was observed in the silage. Biogas yields were calculated as liters normalized to 0 °C and 1013 hPa (LN) per kilogram volatile substances (kgVS). For chemical analysis, samples were taken from the effluents of HR and AF. For sequencing of 16S rRNA gene amplicon libraries, microbial metagenomes, and microbial metatranscriptomes, samples were taken from the silage digestate in the HR digested for 2 d. At this time point, high AD rates were detected as indicated by the fast increase of volatile fatty acids (VFA), e.g., acetic acid. Sampling was performed at two different organic loading rates (OLR), i.e., batch-fermentation of 500 g (denominated as “low OLR”, samples MOLR500 and TOLR500) and 1,500 g silage (denominated as “increased OLR”, samples MOLR1500 and TOLR1500).