Project description:Using data from 83 isolates from a single population, the population genomics of the microcrustacean Daphnia pulex are described and compared to current knowledge for the only other well-studied invertebrate, Drosophila melanogaster These two species are quite similar with respect to effective population sizes and mutation rates, although some features of recombination appear to be different, with linkage disequilibrium being elevated at short ([Formula: see text] bp) distances in D. melanogaster and at long distances in D. pulex The study population adheres closely to the expectations under Hardy-Weinberg equilibrium, and reflects a past population history of no more than a twofold range of variation in effective population size. Fourfold redundant silent sites and a restricted region of intronic sites appear to evolve in a nearly neutral fashion, providing a powerful tool for population genetic analyses. Amino acid replacement sites are predominantly under strong purifying selection, as are a large fraction of sites in UTRs and intergenic regions, but the majority of SNPs at such sites that rise to frequencies [Formula: see text] appear to evolve in a nearly neutral fashion. All forms of genomic sites (including replacement sites within codons, and intergenic and UTR regions) appear to be experiencing an [Formula: see text] higher level of selection scaled to the power of drift in D. melanogaster, but this may in part be a consequence of recent demographic changes. These results establish D. pulex as an excellent system for future work on the evolutionary genomics of natural populations.
Project description:We describe the draft genome of the microcrustacean Daphnia pulex, which is only 200 megabases and contains at least 30,907 genes. The high gene count is a consequence of an elevated rate of gene duplication resulting in tandem gene clusters. More than a third of Daphnia's genes have no detectable homologs in any other available proteome, and the most amplified gene families are specific to the Daphnia lineage. The coexpansion of gene families interacting within metabolic pathways suggests that the maintenance of duplicated genes is not random, and the analysis of gene expression under different environmental conditions reveals that numerous paralogs acquire divergent expression patterns soon after duplication. Daphnia-specific genes, including many additional loci within sequenced regions that are otherwise devoid of annotations, are the most responsive genes to ecological challenges.
Project description:BACKGROUND:Daphniids, commonly known as waterfleas, serve as important model systems for ecology, evolution and the environmental sciences. The sequencing and annotation of the Daphnia pulex genome both open future avenues of research on this model organism. As proteomics is not only essential to our understanding of cell function, and is also a powerful validation tool for predicted genes in genome annotation projects, a first proteomic dataset is presented in this article. RESULTS:A comprehensive set of 701,274 peptide tandem-mass-spectra, derived from Daphnia pulex, was generated, which lead to the identification of 531 proteins. To measure the impact of the Daphnia pulex filtered models database for mass spectrometry based Daphnia protein identification, this result was compared with results obtained with the Swiss-Prot and the Drosophila melanogaster database. To further validate the utility of the Daphnia pulex database for research on other Daphnia species, additional 407,778 peptide tandem-mass-spectra, obtained from Daphnia longicephala, were generated and evaluated, leading to the identification of 317 proteins. CONCLUSION:Peptides identified in our approach provide the first experimental evidence for the translation of a broad variety of predicted coding regions within the Daphnia genome. Furthermore it could be demonstrated that identification of Daphnia longicephala proteins using the Daphnia pulex protein database is feasible but shows a slightly reduced identification rate. Data provided in this article clearly demonstrates that the Daphnia genome database is the key for mass spectrometry based high throughput proteomics in Daphnia.
Project description:Most nuclear receptors (NRs) are ligand-dependent transcription factors crucial in homeostatic physiological responses or environmental responses. We annotated the Daphnia magna NRs and compared them to Daphnia pulex and other species, primarily through phylogenetic analysis. Daphnia species contain 26 NRs spanning all seven gene subfamilies. Thirteen of the 26 receptors found in Daphnia species phylogenetically segregate into the NR1 subfamily, primarily involved in energy metabolism and resource allocation. Some of the Daphnia NRs, such as RXR, HR96, and E75 show strong conservation between D. magna and D. pulex. Other receptors, such as EcRb, THRL-11 and RARL-10 have diverged considerably and therefore may show different functions in the two species. Curiously, there is an inverse association between the number of NR splice variants and conservation of the LBD. Overall, D. pulex and D. magna possess the same NRs; however not all of the NRs demonstrate high conservation indicating the potential for a divergence of function.
Project description:The large gene superfamily of ABC (ATP-binding cassette) transporters encodes membrane proteins involved in trafficking processes across biological membranes and further essential cell biological functions. ABC transporters are evolutionary ancient and involved in the biochemical defence against toxicants. We report here a genome-wide survey of ABC proteins of Daphnia pulex, providing for the first time information on ABC proteins in crustacea, a primarily aquatic arthropod subphylum of high ecological and economical importance.We identified 64 ABC proteins in the Daphnia genome, which possesses members of all current ABC subfamilies A to H. To unravel phylogenetic relationships, ABC proteins of Daphnia were compared to those from yeast, worm, fruit fly and human. A high conservation of Daphnia of ABC transporters was observed for proteins involved in fundamental cellular processes, including the mitochondrial half transporters of the ABCB subfamily, which function in iron metabolism and transport of Fe/S protein precursors, and the members of subfamilies ABCD, ABCE and ABCF, which have roles in very long chain fatty acid transport, initiation of gene transcription and protein translation, respectively. A number of Daphnia proteins showed one-to-one orthologous relationships to Drosophila ABC proteins including the sulfonyl urea receptor (SUR), the ecdysone transporter ET23, and the eye pigment precursor transporter scarlet. As the fruit fly, Daphnia lacked homologues to the TAP protein, which plays a role in antigene processing, and the cystic fibrosis transmembrane conductance regulator (CFTR), which functions as a chloride channel. Daphnia showed two proteins homologous to MDR (multidrug resistance) P-glycoproteins (ABCB subfamily) and six proteins homologous to MRPs (multidrug resistance-associated proteins) (ABCC subfamily). However, lineage specific gene duplications in the ABCB and ABCC subfamilies complicated the inference of function. A particularly high number of gene duplications were observed in the ABCG and ABCH subfamilies, which have 23 and 15 members, respectively.The in silico characterisation of ABC transporters in the Daphnia pulex genome revealed that the complement of ABC transporters is as complex in crustaceans as that other metazoans. Not surprisingly, among currently available genomes, Daphnia ABC transporters most closely resemble those of the fruit fly, another arthropod.
Project description:BACKGROUND: Acidity exerts a determining influence on the composition and diversity of freshwater faunas. While the physiological implications of freshwater acidification have been intensively studied in teleost fish and crayfish, much less is known about the acid-stress physiology of ecologically important groups such as cladoceran zooplankton. This study analyzed the extracellular acid-base state and CO2 partial pressure (P(CO2)), circulation and ventilation, as well as the respiration rate of Daphnia pulex acclimated to acidic (pH 5.5 and 6.0) and circumneutral (pH 7.8) conditions. RESULTS: D. pulex had a remarkably high extracellular pH of 8.33 and extracellular P(CO2) of 0.56 kPa under normal ambient conditions (pH 7.8 and normocapnia). The hemolymph had a high bicarbonate concentration of 20.9 mM and a total buffer value of 51.5 meq L(-1) pH(-1). Bicarbonate covered 93% of the total buffer value. Acidic conditions induced a slight acidosis (DeltapH = 0.16-0.23), a 30-65% bicarbonate loss, and elevated systemic activities (tachycardia, hyperventilation, hypermetabolism). pH 6.0 animals partly compensated the bicarbonate loss by increasing the non-bicarbonate buffer value from 2.0 to 5.1 meq L(-1) pH(-1). The extracellular P(CO2) of pH 5.5 animals was significantly reduced to 0.33 kPa, and these animals showed the highest tolerance to a short-term exposure to severe acid stress. CONCLUSION: Chronic exposure to acidic conditions had a pervasive impact on Daphnia's physiology including acid-base balance, extracellular PCO2, circulation and ventilation, and energy metabolism. Compensatory changes in extracellular non-bicarbonate buffering capacity and the improved tolerance to severe acid stress indicated the activation of defense mechanisms which may result from gene-expression mediated adjustments in hemolymph buffer proteins and in epithelial properties. Mechanistic analyses of the interdependence between extracellular acid-base balance and CO2 transport raised the question of whether a carbonic anhydrase (CA) is involved in the catalysis of the CO2-HCO3(-)-H(+) reaction, which led to the discovery of 31 CA-genes in the genome of D. pulex.
Project description:Long terminal repeat (LTR) retroelements represent a successful group of transposable elements (TEs) that have played an important role in shaping the structure of many eukaryotic genomes. Here, we present a genome-wide analysis of LTR retroelements in Daphnia pulex, a cyclical parthenogen and the first crustacean for which the whole genomic sequence is available. In addition, we analyze transcriptional data and perform transposon display assays of lab-reared lineages and natural isolates to identify potential influences on TE mobility and differences in LTR retroelements loads among individuals reproducing with and without sex.We conducted a comprehensive de novo search for LTR retroelements and identified 333 intact LTR retroelements representing 142 families in the D. pulex genome. While nearly half of the identified LTR retroelements belong to the gypsy group, we also found copia (95), BEL/Pao (66) and DIRS (19) retroelements. Phylogenetic analysis of reverse transcriptase sequences showed that LTR retroelements in the D. pulex genome form many lineages distinct from known families, suggesting that the majority are novel. Our investigation of transcriptional activity of LTR retroelements using tiling array data obtained from three different experimental conditions found that 71 LTR retroelements are actively transcribed. Transposon display assays of mutation-accumulation lines showed evidence for putative somatic insertions for two DIRS retroelement families. Losses of presumably heterozygous insertions were observed in lineages in which selfing occurred, but never in asexuals, highlighting the potential impact of reproductive mode on TE abundance and distribution over time. The same two families were also assayed across natural isolates (both cyclical parthenogens and obligate asexuals) and there were more retroelements in populations capable of reproducing sexually for one of the two families assayed.Given the importance of LTR retroelements activity in the evolution of other genomes, this comprehensive survey provides insight into the potential impact of LTR retroelements on the genome of D. pulex, a cyclically parthenogenetic microcrustacean that has served as an ecological model for over a century.
Project description:Daphnia pulex is quickly becoming an attractive model species in the field of ecological genomics due to the recent release of its complete genome sequence, a wide variety of new genomic resources, and a rich history of ecological data. Sequences of the mitochondrial NADH dehydrogenase subunit 5 and cytochrome c oxidase subunit 1 genes were used to assess the global phylogeography of this species, and to further elucidate its phylogenetic relationship to other members of the Daphnia pulex species complex. Using both newly acquired and previously published data, we analyzed 398 individuals from collections spanning five continents. Eleven strongly supported lineages were found within the D. pulex complex, and one lineage in particular, panarctic D. pulex, has very little phylogeographical structure and a near worldwide distribution. Mismatch distribution, haplotype network, and population genetic analyses are compatible with a North American origin for this lineage and subsequent spatial expansion in the Late Pleistocene. In addition, our analyses suggest that dispersal between North and South America of this and other species in the D. pulex complex has occurred multiple times, and is predominantly from north to south. Our results provide additional support for the evolutionary relationships of the eleven main mitochondrial lineages of the D. pulex complex. We found that the well-studied panarctic D. pulex is present on every continent except Australia and Antarctica. Despite being geographically very widespread, there is a lack of strong regionalism in the mitochondrial genomes of panarctic D. pulex--a pattern that differs from that of most studied cladocerans. Moreover, our analyses suggest recent expansion of the panarctic D. pulex lineage, with some continents sharing haplotypes. The hypothesis that hybrid asexuality has contributed to the recent and unusual geographic success of the panarctic D. pulex lineage warrants further study.
Project description:Although cyanobacteria produce a wide range of natural toxins that impact aquatic organisms, food webs and water quality, the mechanisms of toxicity are still insufficiently understood. Here, we implemented a whole-genome expression microarray to identify pathways, gene networks and paralogous gene families responsive to Microcystis stress in Daphnia pulex. Therefore, neonates of a sensitive isolate were given a diet contaminated with Microcystis to contrast with those given a control diet for sixteen days. The microarray revealed 2247 differentially expressed (DE) genes (7.6% of the array) in response to Microcystis, of which 17% are lineage specific and 49% are gene duplicates (paralogs). We identified four pathways/gene networks and eight paralogous gene families affected by Microcystis. Differential regulation of the ribosome including 3 paralogous gene families encoding 40S, 60S and mitochondrial ribosomal proteins, suggests an impact of Microcystis on protein synthesis of Daphnia. In addition, differential regulation of the oxidative phosphorylation pathway, including the NADH ubquinone oxidoreductase gene family, and trypsin paralogous gene family, major component of the digestive system in Daphnia, could explain why fitness is reduced based on energy budget considerations. For others (.e.g Neurexin IV), a link with fitness remains to be established.