Project description:Samples GSM206658-GSM206693: Acquired Stress resistance in S. cerevisiae: NaCl primary and H2O2 secondary Transcriptional timecourses of yeast cells exposed to 0.7M NaCl alone, 0.5mM H2O2 alone, or 0.5mM H2O2 following 0.7M NaCl, all compared to an unstressed sample. Repeated using msn2∆ strain. Samples GSM291156-GSM291196: Transcriptional response to stress in strains lacking MSN2 and/or MSN4 Transcriptional timecourses of yeast cells (WT, msn2∆, msn4∆, or msn2∆msn4∆) exposed to 0.7M NaCl for 45 minutes or 30-37˚C Heat Shift for 15 min compared to an unstressed sample of the same strain. Keywords: Stress Response
Project description:In this study we investigated the transcriptional response of the yeast Saccharomyces cerevisiae to potassium starvation. To this end yeast cells were grown for 60 min in media without potassium or in media with a standard potassium concnetration (50 mM KCl). Using Serial Analysis of Gene Expression (SAGE)-tag sequencing the effect of potassium starvation on the transcriptome was determined.
Project description:Using multiple genetic screening assays and high-throughput analysis approaches, this study explored the genotoxic and evolutional effects of nonlethal dosages of furfural in yeast model.
Project description:To characterize the ecological interactions among S. cerevisiae strains coming from the same geographical area, we examined the fitness of two natural isolates from San Giovese grapes, alone or in competition, in synthetic wine must (SWM). We performed genome-wide analyses in order to identify the genes involved in yeast competition and cooperation.