Project description:Just as animal monozygotic twins can experience different environmental conditions by being reared apart, individual genetically-identical trees of the genus Populus can also be exposed to contrasting environmental conditions by being grown in different locations. As such, clonally-propagated Populus trees provide an opportunity to interrogate the impact of individual environmental history on current response to environmental stimuli. To test the hypothesis that current responses to an environmental stimulus, drought, are contingent on environmental history, the transcriptome-level drought responses of three economically important hybrid genotypes: DN34 (Populus deltoides x P. nigra); Walker (P. deltoides var. occidentalis x (P. laurifolia x P. nigra)); and, Okanese (‘Walker’ x (P. laurifolia x P. nigra)) derived from two different locations were compared. Strikingly, differences in transcript abundance patterns in response to drought were based on differences in geographic origin of clones for two of the three genotypes. This observation was most pronounced for the genotypes with the longest time since establishment and last common propagation. Differences in genome-wide DNA methylation paralleled the transcriptome level trends, where the clones with the most divergent transcriptomes and clone history had the most marked differences in the extent of total DNA methylation, suggesting an epigenetic basis for the clone-history-dependent transcriptome divergence. The data provide insights into the interplay between genotype and environment in the ecologically and economically important Populus genus, with implications for both the industrial application of Populus trees, and the evolution and persistence of these important tree species. 72 arrays total. 2 time points. 2 water regimes. 3 biological replicates per treatment
Project description:Just as animal monozygotic twins can experience different environmental conditions by being reared apart, individual genetically-identical trees of the genus Populus can also be exposed to contrasting environmental conditions by being grown in different locations. As such, clonally-propagated Populus trees provide an opportunity to interrogate the impact of individual environmental history on current response to environmental stimuli. To test the hypothesis that current responses to an environmental stimulus, drought, are contingent on environmental history, the transcriptome-level drought responses of three economically important hybrid genotypes: DN34 (Populus deltoides x P. nigra); Walker (P. deltoides var. occidentalis x (P. laurifolia x P. nigra)); and, Okanese (‘Walker’ x (P. laurifolia x P. nigra)) derived from two different locations were compared. Strikingly, differences in transcript abundance patterns in response to drought were based on differences in geographic origin of clones for two of the three genotypes. This observation was most pronounced for the genotypes with the longest time since establishment and last common propagation. Differences in genome-wide DNA methylation paralleled the transcriptome level trends, where the clones with the most divergent transcriptomes and clone history had the most marked differences in the extent of total DNA methylation, suggesting an epigenetic basis for the clone-history-dependent transcriptome divergence. The data provide insights into the interplay between genotype and environment in the ecologically and economically important Populus genus, with implications for both the industrial application of Populus trees, and the evolution and persistence of these important tree species.
Project description:Just as animal monozygotic twins can experience different environmental conditions by being reared apart, individual genetically identical trees of the genus Populus can also be exposed to contrasting environmental conditions by being grown in different locations. As such, clonally propagated Populus trees provide an opportunity to interrogate the impact of individual environmental history on current response to environmental stimuli. To test the hypothesis that current responses to an environmental stimulus, drought, are contingent on environmental history, the transcriptome- level drought responses of three economically important hybrid genotypes-DN34 (Populus deltoides × Populus nigra), Walker [P. deltoides var. occidentalis × (Populus laurifolia × P. nigra)], and Okanese [Walker × (P. laurifolia × P. nigra)]-derived from two different locations were compared. Strikingly, differences in transcript abundance patterns in response to drought were based on differences in geographic origin of clones for two of the three genotypes. This observation was most pronounced for the genotypes with the longest time since establishment and last common propagation. Differences in genome-wide DNA methylation paralleled the transcriptome level trends, whereby the clones with the most divergent transcriptomes and clone history had the most marked differences in the extent of total DNA methylation, suggesting an epigenomic basis for the clone history-dependent transcriptome divergence. The data provide insights into the interplay between genotype and environment in the ecologically and economically important Populus genus, with implications for the industrial application of Populus trees and the evolution and persistence of these important tree species and their associated hybrids.
Project description:Drought is a stressor for many soil-inhabiting organisms. Although plants have been extensively investigated for drought-adaptive mechanisms, little information is available for fungi. Antioxidants are especially relevant, since desiccation is accompanied by an excessive intracellular production of reactive oxygen species. Riboflavin (vitamin B2) is one antioxidant regulating drought tolerance in plants. A similar function may exist in fungi. Here, we examined the respiratory and transcriptional responses of Agaricus bisporus to drought and the impact of riboflavin. Mesocosm experiments with four groups were established: hyphae were treated with or without 50 µM riboflavin under drought or no drought conditions. Drought increased riboflavin content in hyphae about 5 times with, but also without, addition of riboflavin. Without addition of riboflavin, fungal respiration decreased by more than 50% at water potentials of about -20 MPa. With addition of riboflavin, respiration remained about 2-3 times higher. The transcriptional responses to only drought or only riboflavin strongly overlapped and were mainly based on factors regulating transcription and translation. This was even stronger in combined treatments. Riboflavin induced protective mechanisms in drought-stressed hyphae. Most pronounced was the methylglyoxal (cytotoxic by-product of glycolysis) detoxifying of lactoylglutathione lyase. Thus, our data suggest a stress-priming function and a role of riboflavin in drought responses of A. bisporus.
Project description:Under natural conditions, plants experience episodes of drought for periods of days or longer. Plants respond to drought stress by reconfiguring their transcriptome activity. Transcriptome changes in response to drought are dynamic, and are likely to be shaped by mitigating factors such as diel signals. To gain insights into the dynamics of transcriptome reconfiguration in response to gradual soil drying, the drought-induced transcriptomes of Arabidopsis thaliana were examined at four time points over a single diel period â midday, late day, midnight, and pre-dawn. A core set of genes was identified that was responsive to drought, independent of the time of day at which they were measured. Strikingly, the magnitude of the drought-induced changes for these genes varied in a time-of-day-dependent manner. An additional set of time-of-day-specific drought-responsive genes were also identified. The diurnal patterns of transcript accumulation for these genes was strongly influenced by drought stress. This study indicates that analysis of a single time point would miss suites of drought-responsive genes that are revealed through assessment of the dynamics of diurnal changes, emphasizing the value of characterizing multiple time-of-day-specific drought transcriptomes. 24 arrays total. 4 time points (midday, late day, midnight, pre-dawn). 2 water regimes (well-watered, water-limited). 3 biological replicates per treatment.
Project description:Under natural conditions, plants experience episodes of drought for periods of days or longer. Plants respond to drought stress by reconfiguring their transcriptome activity. Transcriptome changes in response to drought are dynamic, and are likely to be shaped by mitigating factors such as diel signals. To gain insights into the dynamics of transcriptome reconfiguration in response to gradual soil drying, the drought-induced transcriptomes of Arabidopsis thaliana were examined at four time points over a single diel period – midday, late day, midnight, and pre-dawn. A core set of genes was identified that was responsive to drought, independent of the time of day at which they were measured. Strikingly, the magnitude of the drought-induced changes for these genes varied in a time-of-day-dependent manner. An additional set of time-of-day-specific drought-responsive genes were also identified. The diurnal patterns of transcript accumulation for these genes was strongly influenced by drought stress. This study indicates that analysis of a single time point would miss suites of drought-responsive genes that are revealed through assessment of the dynamics of diurnal changes, emphasizing the value of characterizing multiple time-of-day-specific drought transcriptomes.
Project description:Drought is a major limitation to the growth and productivity of trees in the ecologically and economically important genus Populus. The ability of Populus trees to contend with drought is a function of the responsiveness of their genome to this environmental insult, involving reconfiguration of the transcriptome to appropriately remodel growth, development and metabolism. The Populus drought transcriptome is shaped by interspecific genotypic variation, but the extent to which intraspecific variation shapes the drought transcriptome has not yet been examined. Here we test hypotheses aimed at examining the extent of intraspecific variation in the drought transcriptome. Transcriptome remodeling in response to water-deficit conditions was examined in six different Populus balsamifera L. genotypes using Affymetrix GeneChip technology. There were significant differences in the transcriptomes of the genotypes in response to water-deficit conditions; however, a common species-level response could also be identified across all individuals. Genotypes that had more similar drought-responsive transcriptomes also had fewer genotypic differences, as determined by microarray-derived single feature polymorphism (SFP) analysis, suggesting that responses may be conserved across individuals that share a greater degree of genotypic similarity. This work highlights the fact that a core species-level response can be defined; however, the underpinning genotype-derived complexities of the drought response in Populus must be taken into consideration when defining both species- and genus-level responses. 72 arrays total. 6 genotypes, 2 time points. 2 water regimes. 3 biological replicates per treatment
Project description:In nature, plants are frequently subjected to multiple biotic and abiotic stresses, resulting in a convergence of adaptive responses. We hypothesized that hormonal signalling regulating defences to different herbivores may interact with drought response, causing distinct resistance phenotypes. To test this, we studied hormonal and transcriptomic responses of Solanum dulcamara subjected to drought and herbivory by the generalist Spodoptera exigua (BAW) or the specialist Leptinotarsa decemlineata (CPB). Bioassays showed that plants under drought became more resistant to BAW, but not to CPB. While drought did not alter BAW-induced hormonal responses, it enhanced CPB-induced accumulation of jasmonic acid and salicylic acid (SA) as well as supressed ethylene (ET) emission. Microarray analyses showed that under drought BAW herbivory enhanced several herbivore-induced responses, including cell-wall remodelling and metabolism of carbohydrates, lipids and secondary metabolites. In contrast, CPB herbivory enhanced several photosynthesis-related and pathogen responses in drought-stressed plants. This may divert resources away from the production of effective defences and increase tissue nutritive value. In conclusion, while BAW suffers from the drought-enhanced defences, CPB may benefit from effects of the enhanced SA and reduced ET signalling. This suggests that the fine-tuned interaction between the plant and its specialist herbivore is sustained under drought.
Project description:Drought is a major limitation to the growth and productivity of trees in the ecologically and economically important genus Populus. The ability of Populus trees to contend with drought is a function of the responsiveness of their genome to this environmental insult, involving reconfiguration of the transcriptome to appropriately remodel growth, development and metabolism. The Populus drought transcriptome is shaped by interspecific genotypic variation, but the extent to which intraspecific variation shapes the drought transcriptome has not yet been examined. Here we test hypotheses aimed at examining the extent of intraspecific variation in the drought transcriptome. Transcriptome remodeling in response to water-deficit conditions was examined in six different Populus balsamifera L. genotypes using Affymetrix GeneChip technology. There were significant differences in the transcriptomes of the genotypes in response to water-deficit conditions; however, a common species-level response could also be identified across all individuals. Genotypes that had more similar drought-responsive transcriptomes also had fewer genotypic differences, as determined by microarray-derived single feature polymorphism (SFP) analysis, suggesting that responses may be conserved across individuals that share a greater degree of genotypic similarity. This work highlights the fact that a core species-level response can be defined; however, the underpinning genotype-derived complexities of the drought response in Populus must be taken into consideration when defining both species- and genus-level responses.