Project description:The combination of piperaquine and dihydroartemisinin has recently become the official first-line therapy in several Southeast Asian countries. The pharmacokinetic mismatching of these drugs, whose plasma half lives are ∼20 days and ∼1 hr respectively, implies that recrudescent or new infections emerging shortly after treatment cessation will encounter piperaquine as a monotherapy agent. This creates substantial selection pressure for the emergence of resistance. To elucidate potential resistance determinants, we subjected cloned Plasmodium falciparum Dd2 parasites to continuous piperaquine pressure in vitro (47 nM, ∼two-fold higher than the Dd2 IC(50) value). The phenotype of outgrowth parasites was assayed in two clones, revealing an IC(50) value against piperaquine of 2.1 μM and 1.7 μM, over 100-fold greater than the parent. To identify the genetic determinant of resistance, we employed comparative whole-genome hybridization analysis. Compared to the Dd2 parent, this analysis found (in both resistant clones) a novel single nucleotide polymorphism in pfcrt, deamplification of an 82 kb region of chromosome 5 (that includes pfmdr1), and amplification of an adjacent 63 kb region of chromosome 5. Continued propagation without piperaquine selection pressure resulted in derivation of "revertant" piperaquine-sensitive parasites. These retained the pfcrt polymorphism and further deamplified the chromosome 5 segment that encompasses pfmdr1; however, these two independently generated revertants both lost the neighboring 63 kb amplification. These results suggest that a copy number variation event on chromosome 5 (825600-888300) is associated with piperaquine resistance. Transgenic studies are underway with individual genes in this segment to evaluate their contribution to piperaquine resistance.
Project description:The emergence of multidrug resistance in Plasmodium falciparum parasites presents a significant obstacle to the malaria elimination agenda. Resistance to piperaquine (PPQ), an important first-line partner drug, has spread across Southeast Asia where it has contributed to widespread treatment failures. The genetic cause of resistance to PPQ is attributable to a novel set of amino acid substitutions in the P. falciparum chloroquine resistance transporter (PfCRT). The objective of our study is to characterize gene expression signatures associated with PPQ-resistance associated PfCRT mutations by comparing transcriptional profiles of PPQ-resistant PfCRT mutants (F145I, G353V, M343L) and isogenic PPQ-sensitive lines that were generated by zinc finger nuclease (ZFN) based editing in a long-term adapted (Dd2).
Project description:To help malaria parasites survive unpredictable host immune responses, it is known that genes for surface proteins express stochastically in Plasmodium falciparum. Here, we demonstrate that gene expression for intracellular metabolic functions may be preordained and insensitive to specific metabolic perturbations. In a tightly-controlled, large microarray study involving over 100 hybridizations to isogenic drug-sensitive and drug-resistant parasites, the lethal antifolate WR99210 failed to over-produce RNA for the biochemically and genetically proven target dihydrofolate reductase-thymidylate synthase (DHFR-TS). Beyond the target, this transcriptional obstinacy carried over to the rest of the parasite genome, including genes for target pathways of folate and pyrimidine metabolism. Even 12 hours after commitment to death, the transcriptome remained faithful to evolutionarily entrained paths. A system-wide transcriptional disregard for metabolic perturbations in malaria parasites may contribute to selective vulnerabilities of the parasite to lethal antimetabolites. While large protective metabolic responses were not detected, DNA microarrays helped capture small, but reproducible drug-dependent perturbations within hours of drug exposure. In addition, in Plasmodium cells that had adapted to long-term drug exposure, DNA microarrays revealed new, large genome-wide transcriptional adjustments in the hard-wired transcriptional program itself. Keywords: Plasmodium falciparum treated with WR99210 RNA from P. falciparum Dd2 and B1G9 (WR99210 resistant cell-line) trophozoites that had been treated with 10 nM WR99210 for varying durations (3, 6, 9, 15, 18, 21 and 24h) was hybridized against a common pool of trophozoite RNA from a cognate clone, a culture containing 0.1% (v/v) DMSO lacking drug was used as untreated control, microarray data were obtained from at least four hybridizations using RNA from two independent parasite cultures
Project description:To help malaria parasites survive unpredictable host immune responses, it is known that genes for surface proteins express stochastically in Plasmodium falciparum. Here, we demonstrate that gene expression for intracellular metabolic functions may be preordained and insensitive to specific metabolic perturbations. In a tightly-controlled, large microarray study involving over 100 hybridizations to isogenic drug-sensitive and drug-resistant parasites, the lethal antifolate WR99210 failed to over-produce RNA for the biochemically and genetically proven target dihydrofolate reductase-thymidylate synthase (DHFR-TS). Beyond the target, this transcriptional obstinacy carried over to the rest of the parasite genome, including genes for target pathways of folate and pyrimidine metabolism. Even 12 hours after commitment to death, the transcriptome remained faithful to evolutionarily entrained paths. A system-wide transcriptional disregard for metabolic perturbations in malaria parasites may contribute to selective vulnerabilities of the parasite to lethal antimetabolites. While large protective metabolic responses were not detected, DNA microarrays helped capture small, but reproducible drug-dependent perturbations within hours of drug exposure. In addition, in Plasmodium cells that had adapted to long-term drug exposure, DNA microarrays revealed new, large genome-wide transcriptional adjustments in the hard-wired transcriptional program itself. Keywords: Plasmodium falciparum treated with WR99210
Project description:To help malaria parasites survive unpredictable host immune responses, it is known that genes for surface proteins express stochastically in Plasmodium falciparum. Here, we demonstrate that gene expression for intracellular metabolic functions may be preordained and insensitive to specific metabolic perturbations. In a tightly-controlled, large microarray study involving over 100 hybridizations to isogenic drug-sensitive and drug-resistant parasites, the lethal antifolate WR99210 failed to over-produce RNA for the biochemically and genetically proven target dihydrofolate reductase-thymidylate synthase (DHFR-TS). Beyond the target, this transcriptional obstinacy carried over to the rest of the parasite genome, including genes for target pathways of folate and pyrimidine metabolism. Even 12 hours after commitment to death, the transcriptome remained faithful to evolutionarily entrained paths. A system-wide transcriptional disregard for metabolic perturbations in malaria parasites may contribute to selective vulnerabilities of the parasite to lethal antimetabolites. While large protective metabolic responses were not detected, DNA microarrays helped capture small, but reproducible drug-dependent perturbations within hours of drug exposure. In addition, in Plasmodium cells that had adapted to long-term drug exposure, DNA microarrays revealed new, large genome-wide transcriptional adjustments in the hard-wired transcriptional program itself. Keywords: Plasmodium falciparum treated with pyrimethamine
Project description:To help malaria parasites survive unpredictable host immune responses, it is known that genes for surface proteins express stochastically in Plasmodium falciparum. Here, we demonstrate that gene expression for intracellular metabolic functions may be preordained and insensitive to specific metabolic perturbations. In a tightly-controlled, large microarray study involving over 100 hybridizations to isogenic drug-sensitive and drug-resistant parasites, the lethal antifolate WR99210 failed to over-produce RNA for the biochemically and genetically proven target dihydrofolate reductase-thymidylate synthase (DHFR-TS). Beyond the target, this transcriptional obstinacy carried over to the rest of the parasite genome, including genes for target pathways of folate and pyrimidine metabolism. Even 12 hours after commitment to death, the transcriptome remained faithful to evolutionarily entrained paths. A system-wide transcriptional disregard for metabolic perturbations in malaria parasites may contribute to selective vulnerabilities of the parasite to lethal antimetabolites. While large protective metabolic responses were not detected, DNA microarrays helped capture small, but reproducible drug-dependent perturbations within hours of drug exposure. In addition, in Plasmodium cells that had adapted to long-term drug exposure, DNA microarrays revealed new, large genome-wide transcriptional adjustments in the hard-wired transcriptional program itself. Keywords: Plasmodium falciparum treated with pyrimethamine
Project description:To help malaria parasites survive unpredictable host immune responses, it is known that genes for surface proteins express stochastically in Plasmodium falciparum. Here, we demonstrate that gene expression for intracellular metabolic functions may be preordained and insensitive to specific metabolic perturbations. In a tightly-controlled, large microarray study involving over 100 hybridizations to isogenic drug-sensitive and drug-resistant parasites, the lethal antifolate WR99210 failed to over-produce RNA for the biochemically and genetically proven target dihydrofolate reductase-thymidylate synthase (DHFR-TS). Beyond the target, this transcriptional obstinacy carried over to the rest of the parasite genome, including genes for target pathways of folate and pyrimidine metabolism. Even 12 hours after commitment to death, the transcriptome remained faithful to evolutionarily entrained paths. A system-wide transcriptional disregard for metabolic perturbations in malaria parasites may contribute to selective vulnerabilities of the parasite to lethal antimetabolites. While large protective metabolic responses were not detected, DNA microarrays helped capture small, but reproducible drug-dependent perturbations within hours of drug exposure. In addition, in Plasmodium cells that had adapted to long-term drug exposure, DNA microarrays revealed new, large genome-wide transcriptional adjustments in the hard-wired transcriptional program itself. Keywords: Plasmodium falciparum treated with pyrimethamine RNA from pyrimethamine-treated parasite vs RNA from untreated control, Pyr-sensitive TM4/8.2 strain, pyrimethamine concentration at IC50 and treated for 0 h and 24 h, microarray data were obtained from at least four hybridizations using RNA from at lease two independent parasite cultures
Project description:To help malaria parasites survive unpredictable host immune responses, it is known that genes for surface proteins express stochastically in Plasmodium falciparum. Here, we demonstrate that gene expression for intracellular metabolic functions may be preordained and insensitive to specific metabolic perturbations. In a tightly-controlled, large microarray study involving over 100 hybridizations to isogenic drug-sensitive and drug-resistant parasites, the lethal antifolate WR99210 failed to over-produce RNA for the biochemically and genetically proven target dihydrofolate reductase-thymidylate synthase (DHFR-TS). Beyond the target, this transcriptional obstinacy carried over to the rest of the parasite genome, including genes for target pathways of folate and pyrimidine metabolism. Even 12 hours after commitment to death, the transcriptome remained faithful to evolutionarily entrained paths. A system-wide transcriptional disregard for metabolic perturbations in malaria parasites may contribute to selective vulnerabilities of the parasite to lethal antimetabolites. While large protective metabolic responses were not detected, DNA microarrays helped capture small, but reproducible drug-dependent perturbations within hours of drug exposure. In addition, in Plasmodium cells that had adapted to long-term drug exposure, DNA microarrays revealed new, large genome-wide transcriptional adjustments in the hard-wired transcriptional program itself. Keywords: Plasmodium falciparum treated with pyrimethamine RNA from pyrimethamine-treated parasite vs RNA from untreated control, Pyr-sensitive TM4/8.2 parasite strain, pyrimethamine concentration at IC50 and treated for 2 h, 4 h, and 8 h, microarray data were obtained from at least four hybridizations using RNA from at least two independent parasite cultures
Project description:ChIP-seq experiments were performed for the putative telomere repeat-binding factor (PfTRF) in the malaria parasite Plasmodium falciparum strain 3D7. The gene encoding this factor (PF3D7_1209300) was endogenously tagged with either a GFP- or a 3xHA-tag and these transgenic parasite lines were used in ChIP-sequencing experiments. Sequencing of the ChIP and input libraries showed enrichment of PfTRF at all telomere-repeat containing chromosome ends (reference genome Plasmodium falciparum 3D7 from PlasmoDB version 6.1) as well as in all upsB var promoters.In addition,PfTRF was enriched at seven additional, intra-chromosomal sites and called in the PfTRF-HA ChIP-seq only. Plasmodium falciparum 3D7 parasites were generated with -GFP or -3xHA C-terminal tagged TRF (PF3D7_1209300). Nuclei were isolated from formaldehyde cross-linked schizont-stage transgenic parasites and used to prepare chromatin. Chromatin immunoprecipitations were performed using mouse anti-GFP (Roche Diagnostics, #11814460001) or rat anti-HA 3F10 (Roche Diagnostics, #12158167001). Sequencing libraries were prepared according to a Plasmodium-optimized library preparation procedure including KAPA polymerase-mediated PCR amplification.