Project description:To identify peanut Aspergillus-interactive and Aspergillus-resistance genes, we carried out a large scale peanut Expressed Sequence Tag (EST) project followed by a peanut microarray study. For expression profiling, resistant and susceptible peanut cultivars were infected with a mixture of Aspergillus flavus and parasiticus spores. Microarray analysis identified 65 and 1 genes in resistant (C20) and susceptible (TF) cultivars, respectively, that were up-regulated in response to Aspergillus infection. In addition we identified 40 putative Aspergillus-resistance genes that were constitutively up-expressed in the resistant cultivar in comparison to the susceptible cultivar. Some of these genes were homologous to peanut, corn, and soybean genes previously shown to confer resistance to fungal infection. These results provide a comprehensive genome-scale platform for future studies focused on developing Aspergillus-resistant peanut cultivars through conventional breeding, marker-assisted breeding, or biotechnological methods by gene manipulation.
Project description:To identify peanut Aspergillus-interactive and Aspergillus-resistance genes, we carried out a large scale peanut Expressed Sequence Tag (EST) project followed by a peanut microarray study. For expression profiling, resistant and susceptible peanut cultivars were infected with a mixture of Aspergillus flavus and parasiticus spores. Microarray analysis identified 65 and 1 genes in resistant (C20) and susceptible (TF) cultivars, respectively, that were up-regulated in response to Aspergillus infection. In addition we identified 40 putative Aspergillus-resistance genes that were constitutively up-expressed in the resistant cultivar in comparison to the susceptible cultivar. Some of these genes were homologous to peanut, corn, and soybean genes previously shown to confer resistance to fungal infection. These results provide a comprehensive genome-scale platform for future studies focused on developing Aspergillus-resistant peanut cultivars through conventional breeding, marker-assisted breeding, or biotechnological methods by gene manipulation. Four samples were analyzed with four hybs. Two samples were obtained from resistant (C20) and and susceptible (TF) cultivars. Two factors were varied in the experimental design: (i) peanut cultivars (resistant (GT-C20) and susceptible (TF)) and (ii) Aspergillus exposure. A combination of these factors produced four hybridizations as follows: (1) C20Y vs. TFY (GT-C20 infected vs. TF infected) (2) C20Y vs. C20N (GT-C20 infected vs. not infected) (3) TFY vs. TFN (TF infected vs. not infected) (4) C20N vs. TFN (GT-C20 not infected vs. TF not infected)
Project description:Comparison of gene expression profiles of widespread peanut cultivars for exploring the expression data in pod and leaf with regard to signatures of artificial selection
Project description:The root proteomics of two cultivars differing in seed Cd accumulation, Fenghua 1 (F, low Cd cultivar) and Silihong (S, high Cd cultivar), were investigated under 0 (CK) and 2 μM Cd (Cd) conditions. The eight root proteins from two biological replicates of both peanut cultivars under Cd-free and Cd treated were obtained from iTRAQ experiments.
Project description:Comparison of gene expression profiles of widespread peanut cultivars for exploring the expression data in pod and leaf with regard to signatures of artificial selection We investigated the overall expression by hybridizing the microarray (GPL13178) with RNA samples from pods and leaves of five selected representative peanut varieties (Fuhuasheng, Shitouqi, Yueyou116, Shanyou523, and Yueyou7), which were widely cultivated in different periods of the past fifty years in southern China. We used the RNA sample from Yueyou7 pod as a reference for all the pod hybridizations, and used the Yueyou7 leaf sample as a reference for all the leaf hybridizations. Field grown plants under normal irrigation were used for sample collection. Replicates with dye-swap were performed for each genotype.
Project description:Aflatoxin contamination caused by Aspergillus flavus in peanut is a serious constraint for food safety and human health. However, molecular mechanism/s underlying the defense response is poorly understood. A comparative proteomic analysis was carried out between two contrasting peanut genotypes, JL24 (WT-susceptible) and a near-isogenic transgenic event (OE-Def) in the same background expressing defensin gene (resistant) with different time points, To understand the proteome changes in OE-Def and WT control lines, a label-free quantitative proteomics analysis was performed at 0, 24, 40, 56 and 72 h after A. flavus inoculation using UPLC-ESI-MS/MS. Several resistance proteins in the secondary metabolic pathways related to phenylpropanoids, flavonoids, and fatty acid biosynthesis were strongly induced in the resistant genotype.