Project description:Salmon infected with an ectoparasitic marine copepod, the salmon louse Lepeophtheirus salmonis, incur a wide variety of consequences depending upon host sensitivity. Juvenile pink salmon (Oncorhynchus gorbuscha) migrate from natal freshwater systems to the ocean at a young age relative to other Pacific salmon, and require rapid development of appropriate defences against marine pathogens. We analyzed the early transcriptomic responses of naïve juvenile pink salmon of sizes 0.3g (no scales), 0.7g (mid-scale development) and 2.4g (scales fully developed) to a low-level laboratory exposure with early moult stage L. salmonis. All infected size groups exhibited unique transcriptional profiles. Inflammation and inhibition of cell proliferation was identified in the smallest size class (0.3g), while increased glucose absorption and retention was identified in the middle size class (0.7g). Tissue-remodelling genes were also up-regulated in both the 0.3g and 0.7g size groups. Profiles of the 2.4g size class indicated cell-mediated immunity and possibly parasite-induced growth augmentation. Understanding a size-based threshold of resistance to L. salmonis is important for fisheries management. This work characterizes molecular responses reflecting the gradual development of innate immunity to L. salmonis between the susceptible (0.3g) and refractory (2.4g) pink salmon size classes.
Project description:Salmon infected with an ectoparasitic marine copepod, the salmon louse Lepeophtheirus salmonis, incur a wide variety of consequences depending upon host sensitivity. Juvenile pink salmon (Oncorhynchus gorbuscha) migrate from natal freshwater systems to the ocean at a young age relative to other Pacific salmon, and require rapid development of appropriate defences against marine pathogens. We analyzed the early transcriptomic responses of naïve juvenile pink salmon of sizes 0.3g (no scales), 0.7g (mid-scale development) and 2.4g (scales fully developed) to a low-level laboratory exposure with early moult stage L. salmonis. All infected size groups exhibited unique transcriptional profiles. Inflammation and inhibition of cell proliferation was identified in the smallest size class (0.3g), while increased glucose absorption and retention was identified in the middle size class (0.7g). Tissue-remodelling genes were also up-regulated in both the 0.3g and 0.7g size groups. Profiles of the 2.4g size class indicated cell-mediated immunity and possibly parasite-induced growth augmentation. Understanding a size-based threshold of resistance to L. salmonis is important for fisheries management. This work characterizes molecular responses reflecting the gradual development of innate immunity to L. salmonis between the susceptible (0.3g) and refractory (2.4g) pink salmon size classes. Six-condition experiment, 3 size groups each infected and uninfected, duplicate tanks. Biological replicates: 6 control, 6 infected for each size group. Sampled 6 days post exposure. cDNA samples with reference design (aRNA), two-color array.
Project description:The present work characterizes the response of co-habited Atlantic (Salmo salar), chum (Oncorhynchus keta) and pink salmon (Oncorhynchus gorbuscha) to sea lice infections. Atlantic and pink salmon anterior kidney samples were profiled at three time points over nine days after the start of an experimental infection. Chum salmon anterior kidney was profiled at day six post infection only. All three species were also profiled at six days post exposure for skin responses of the pectoral fin, typically associated with lice infection.
Project description:Here we used RNAseq in juvenile pink salmon (Oncorhynchus gorbuscha) exposed to crude oil at different concetrations to identify molecular changes associated with cardiac defects.
Project description:The pink salmon (Oncorhynchus gorbuscha) is a commercial anadromous fish species of the family Salmonidae. The species has a peculiar life cycle that includes spawning migration from marine to freshwater environments, which is accompanied by significant adaptive changes in the body, both the physiological and biochemical. This study described and revealed the variability of blood plasma proteomes of female and male pink salmon collected from three different biotopes - marine, estuarine and riverine - that the fish pass through spawning migration. Identification and comparative analysis of pink salmon blood plasma protein profiles were performed using proteomic and bioinformatic approaches. Blood proteomes of female and male spawners collected from different biotopes were qualitatively and quantitatively distinguished. Females differed primarily by proteins associated with reproductive system development (certain vitellogenin and choriogenin), lipid transport (fatty acid binding protein) and energy production (fructose 1,6-bisphosphatase), and males - by proteins involved in blood coagulation (fibrinogen), immune response (lectins) and reproductive processes (vitellogenin). Differentially expressed sex-specific proteins were implicated in proteolysis (aminopeptidases), platelet activation (β- and γ-chain fibrinogen), cell growth and differentiation (a protein containing the TGF_BETA_2 domain) and lipid transport processes (vitellogenin and apolipoprotein). The results obtained are of fundamental and practical importance, providing to the existing knowledge of biochemical adaptations to spawning of pink salmon, representative of the economically important migratory fish species.
Project description:This study investigates transcriptomic responses of Atlantic salmon lice, Lepeophtheirus salmonis exposed to cypermethrin, a commonly used antiparasitic agent used in aquaculture. Copepodid L. salmonis were exposed to cypermethrin (Betamax®) at a concentration of 1.0ppb
Project description:This study investigates the baseline or inducible differences in between populations of Atlantic salmon lice Lepeophtheirus salmonis with differing levels of resistance to the parasiticidal drug emamectin benzoate (EMB), as well as the induced effects of EMB exposure to Pacific salmon lice. F1 generation lice were exposed in bioassays to a dilution series of emamectin benzoate.
Project description:This study investigates transcriptomic responses of Pacific salmon lice, Lepeophtheirus salmonis, to infection with the microsporidian Facilispora margolisi and/or exposure to emamectin benzoate (EMB), an antiparasitic agent commonly used in salmon aquaculture.