Project description:Tumor necrosis factor-related weak inducer of apoptosis, TWEAK, is a TNF superfamily member that mediates signaling through its receptor fibroblast growth factor inducible-14, Fn14. In tumor cell lines, TWEAK induces proliferation, survival and NF-kappaB signaling and gene expression that promote tumor growth and suppress antitumor immune responses. Anti-TWEAK antibody, RG7212, inhibits tumor growth in vivo with decreases in pathway activation markers and modulation of tumor, blood and spleen immune cell composition. Candidate response prediction markers, including Fn14, have been identified in mouse models. Phase I pharmacodynamic data from patients are consistent with preclinical results. TWEAK:Fn14 signaling is upregulated in human cancer and pathway activation induces tumor proliferation and survival signaling. Blockade with anti-TWEAK mAb, RG7212, inhibits tumor growth in multiple models in mice. TWEAK induces changes that suppress anti-tumor immune responses and RG7212 blocks these effects resulting in changes in tumor immune cell composition and decreases in cytokines that promote immunosuppression. Antitumor efficacy in mice was observed in a range of Fn14 expressing models with pathway activation and expressing either wild-type or mutant p53, BRAF or KRAS suggesting both a patient selection strategy and potential broad clinical applicability. Preclinical mechanism of action hypotheses are supported by Phase I clinical data, with decreases in proliferation markers and increased tumor T cell infiltration. U2OS cells untreated or treated with 1090-TW (TWEAK) for 15 minutes, 1 hour, 4 hours, 8 hours, or 24 hours. Five replicates for each condition were performed.
Project description:Tumor necrosis factor-related weak inducer of apoptosis, TWEAK, is a TNF superfamily member that mediates signaling through its receptor fibroblast growth factor inducible-14, Fn14. In tumor cell lines, TWEAK induces proliferation, survival and NF-kappaB signaling and gene expression that promote tumor growth and suppress antitumor immune responses. Anti-TWEAK antibody, RG7212, inhibits tumor growth in vivo with decreases in pathway activation markers and modulation of tumor, blood and spleen immune cell composition. Candidate response prediction markers, including Fn14, have been identified in mouse models. Phase I pharmacodynamic data from patients are consistent with preclinical results. TWEAK:Fn14 signaling is upregulated in human cancer and pathway activation induces tumor proliferation and survival signaling. Blockade with anti-TWEAK mAb, RG7212, inhibits tumor growth in multiple models in mice. TWEAK induces changes that suppress anti-tumor immune responses and RG7212 blocks these effects resulting in changes in tumor immune cell composition and decreases in cytokines that promote immunosuppression. Antitumor efficacy in mice was observed in a range of Fn14 expressing models with pathway activation and expressing either wild-type or mutant p53, BRAF or KRAS suggesting both a patient selection strategy and potential broad clinical applicability. Preclinical mechanism of action hypotheses are supported by Phase I clinical data, with decreases in proliferation markers and increased tumor T cell infiltration. Pan02 cells untreated or treated with 1090-TW (TWEAK) for 4 hours, 8 hours, or 24 hours. Four replicates for each condition were performed.
Project description:Tumor necrosis factor-related weak inducer of apoptosis, TWEAK, is a TNF superfamily member that mediates signaling through its receptor fibroblast growth factor inducible-14, Fn14. In tumor cell lines, TWEAK induces proliferation, survival and NF-kappaB signaling and gene expression that promote tumor growth and suppress antitumor immune responses. Anti-TWEAK antibody, RG7212, inhibits tumor growth in vivo with decreases in pathway activation markers and modulation of tumor, blood and spleen immune cell composition. Candidate response prediction markers, including Fn14, have been identified in mouse models. Phase I pharmacodynamic data from patients are consistent with preclinical results. TWEAK:Fn14 signaling is upregulated in human cancer and pathway activation induces tumor proliferation and survival signaling. Blockade with anti-TWEAK mAb, RG7212, inhibits tumor growth in multiple models in mice. TWEAK induces changes that suppress anti-tumor immune responses and RG7212 blocks these effects resulting in changes in tumor immune cell composition and decreases in cytokines that promote immunosuppression. Antitumor efficacy in mice was observed in a range of Fn14 expressing models with pathway activation and expressing either wild-type or mutant p53, BRAF or KRAS suggesting both a patient selection strategy and potential broad clinical applicability. Preclinical mechanism of action hypotheses are supported by Phase I clinical data, with decreases in proliferation markers and increased tumor T cell infiltration. ACHN cells untreated or treated with 1090-TW (TWEAK) for 4 hours, 8 hours, or 24 hours. Four replicates for each condition were performed.
Project description:Tumor necrosis factor-related weak inducer of apoptosis, TWEAK, is a TNF superfamily member that mediates signaling through its receptor fibroblast growth factor inducible-14, Fn14. In tumor cell lines, TWEAK induces proliferation, survival and NF-kappaB signaling and gene expression that promote tumor growth and suppress antitumor immune responses. Anti-TWEAK antibody, RG7212, inhibits tumor growth in vivo with decreases in pathway activation markers and modulation of tumor, blood and spleen immune cell composition. Candidate response prediction markers, including Fn14, have been identified in mouse models. Phase I pharmacodynamic data from patients are consistent with preclinical results. TWEAK:Fn14 signaling is upregulated in human cancer and pathway activation induces tumor proliferation and survival signaling. Blockade with anti-TWEAK mAb, RG7212, inhibits tumor growth in multiple models in mice. TWEAK induces changes that suppress anti-tumor immune responses and RG7212 blocks these effects resulting in changes in tumor immune cell composition and decreases in cytokines that promote immunosuppression. Antitumor efficacy in mice was observed in a range of Fn14 expressing models with pathway activation and expressing either wild-type or mutant p53, BRAF or KRAS suggesting both a patient selection strategy and potential broad clinical applicability. Preclinical mechanism of action hypotheses are supported by Phase I clinical data, with decreases in proliferation markers and increased tumor T cell infiltration. MDA-MB-436 cells untreated or treated with 1090-TW (TWEAK) for 15 minutes, 1 hour, 4 hours, 8 hours, or 24 hours. Five replicates for each condition were performed.
Project description:Tumor necrosis factor-related weak inducer of apoptosis, TWEAK, is a TNF superfamily member that mediates signaling through its receptor fibroblast growth factor inducible-14, Fn14. In tumor cell lines, TWEAK induces proliferation, survival and NF-kappaB signaling and gene expression that promote tumor growth and suppress antitumor immune responses. Anti-TWEAK antibody, RG7212, inhibits tumor growth in vivo with decreases in pathway activation markers and modulation of tumor, blood and spleen immune cell composition. Candidate response prediction markers, including Fn14, have been identified in mouse models. Phase I pharmacodynamic data from patients are consistent with preclinical results. TWEAK:Fn14 signaling is upregulated in human cancer and pathway activation induces tumor proliferation and survival signaling. Blockade with anti-TWEAK mAb, RG7212, inhibits tumor growth in multiple models in mice. TWEAK induces changes that suppress anti-tumor immune responses and RG7212 blocks these effects resulting in changes in tumor immune cell composition and decreases in cytokines that promote immunosuppression. Antitumor efficacy in mice was observed in a range of Fn14 expressing models with pathway activation and expressing either wild-type or mutant p53, BRAF or KRAS suggesting both a patient selection strategy and potential broad clinical applicability. Preclinical mechanism of action hypotheses are supported by Phase I clinical data, with decreases in proliferation markers and increased tumor T cell infiltration. CAKI cells impanted as xenografts in Athymic, Nu/Nu nude mice, treated with anti-TWEAK antibody (TW212) or Vehicle for 24 hours. Four replicates for each condition were performed. RNA was extracted from xenografts, processed and hybridized to human and mouse chips.
Project description:Tumor necrosis factor-related weak inducer of apoptosis, TWEAK, is a TNF superfamily member that mediates signaling through its receptor fibroblast growth factor inducible-14, Fn14. In tumor cell lines, TWEAK induces proliferation, survival and NF-kappaB signaling and gene expression that promote tumor growth and suppress antitumor immune responses. Anti-TWEAK antibody, RG7212, inhibits tumor growth in vivo with decreases in pathway activation markers and modulation of tumor, blood and spleen immune cell composition. Candidate response prediction markers, including Fn14, have been identified in mouse models. Phase I pharmacodynamic data from patients are consistent with preclinical results. TWEAK:Fn14 signaling is upregulated in human cancer and pathway activation induces tumor proliferation and survival signaling. Blockade with anti-TWEAK mAb, RG7212, inhibits tumor growth in multiple models in mice. TWEAK induces changes that suppress anti-tumor immune responses and RG7212 blocks these effects resulting in changes in tumor immune cell composition and decreases in cytokines that promote immunosuppression. Antitumor efficacy in mice was observed in a range of Fn14 expressing models with pathway activation and expressing either wild-type or mutant p53, BRAF or KRAS suggesting both a patient selection strategy and potential broad clinical applicability. Preclinical mechanism of action hypotheses are supported by Phase I clinical data, with decreases in proliferation markers and increased tumor T cell infiltration. ACHN cells impanted as xenografts in Athymic, Nu/Nu nude mice, treated with anti-TWEAK antibody (TW212), B20 antibody control or Vehicle for 4 hours, 8 hours, or 24 hours. Five replicates for each condition were performed.
Project description:Alcoholic hepatitis (AH) is the most severe form of alcoholic liver disease and occurs in patients with excessive alcohol intake It is characterized by marked hepatocellular damage, steatosis and pericellular fibrosis. Patients with severe AH have a poor short-term prognosis. Unfortunately, current therapies (i.e. corticosteroids and pentoxyphylline) are not effective in many patients and novel targeted therapies are urgently needed. The development of such therapies is hampered by a poor knowledge of the underlying molecular mechanisms. Based on studies from animal models, TNF alfa was proposed to play a pivotal role in the mechanisms of AH. Consequently, drugs interfering TNF alfa were tested in these patients. The results were disappointing due to an increased incidence of severe infections. Unluckily, there are not experimental models that mimic the main findings of AH in humans. To overcome this limitation, translational studies with human samples are required. We previously analyzed samples from patients with biopsy-proven AH. In these previous studies, we identified CXC chemokines as a potential therapeutic target for these patients. We expanded these previous observations by performing a high-throughout transcriptome analysis. Hepatic gene expression profiling was assessed by DNA microarray in patients with Alcoholic hepatitis (n=15) and normal livers (n=7).
Project description:To test the efficacy of TNFR-Fc and anti-TWEAK mAb treatment alone and in combination Tumor necrosis factor (TNF)-alpha is a major effector in various inflammatory conditions. TNF-like weak inducer of apoptosis (TWEAK) is a member of the TNF superfamily that promotes inflammatory tissue damage through its receptor, FGF-inducible molecule 14 (Fn14). Since both TWEAK and TNF-alpha have been shown to mediate pathological responses through inter-dependent or independent pathways by in vitro, the potential interplay of these pathways was investigated in a mouse colitis model. Acute colitis was induced by rectal injection of trinitrobenzene sulfonic acid (TNBS), with administration of control IgG, TNF receptor (TNFR)-Ig chimeric protein, anti-TWEAK monoclonal antibody, or the combination of TNFR-Ig and anti-TWEAK antibody. On day 4, disease severity was evaluated and gene expression profiling was analyzed using whole colon tissue. Levels of transcript of TWEAK, Fn14 and NF-kB-related molecules were measured in purified colon epithelial cells (ECs). NF-kB activation was investigated with Western blot and immunohistochemical analysis. As a result, activation of the canonical, but not noncanonical NF-kB pathway was the hallmark of inflammatory responses in this model. Inflammation induced upregulation of Fn14 only in ECs but not in other cell types. Combination treatment of TNFR-Ig and anti-TWEAK antibody synergistically reduced disease severity in comparison with the control antibody or single agent treatment. Gene expression profile of the colon indicated downregulation of canonical NF-kB pathway with combination treatment. In conclusion, synergistic activation of canonical NF-kB by TWEAK and TNF-alpha is critical for the induction of inflammatory tissue damage in acute inflammation.
Project description:TNF-like weak inducer of apoptosis (TWEAK) and its cognate receptor Fn14 have been shown to play an important role in neurocognitive dysfunction in murine lupus. We profiled and compared gene expression in the hippocampi of MRL/+, MRL/lpr and MRL/lpr-Fn14 knockout (Fn14ko) adult female mice to determine the transcriptomic impact of TWEAK/Fn14 on hippocampal gene expression in lupus. We found that the TWEAK/Fn14 pathway strongly affects the expression level, variability and coordination of the genomic fabrics responsible for neurotransmission and chemokine signaling. Dysregulation of the PI3K-Akt pathway in the MRL/lpr lupus strain compared with the MRL/+ control and Fn14ko mice was particularly prominent and therefore promising as a potential therapeutic target, although the complexity of the transcriptomic fabric highlights important considerations in in vivo experimental models.
Project description:Tumor necrosis factor-related weak inducer of apoptosis, TWEAK, is a TNF superfamily member that mediates signaling through its receptor fibroblast growth factor inducible-14, Fn14. In tumor cell lines, TWEAK induces proliferation, survival and NF-kappaB signaling and gene expression that promote tumor growth and suppress antitumor immune responses. Anti-TWEAK antibody, RG7212, inhibits tumor growth in vivo with decreases in pathway activation markers and modulation of tumor, blood and spleen immune cell composition. Candidate response prediction markers, including Fn14, have been identified in mouse models. Phase I pharmacodynamic data from patients are consistent with preclinical results. TWEAK:Fn14 signaling is upregulated in human cancer and pathway activation induces tumor proliferation and survival signaling. Blockade with anti-TWEAK mAb, RG7212, inhibits tumor growth in multiple models in mice. TWEAK induces changes that suppress anti-tumor immune responses and RG7212 blocks these effects resulting in changes in tumor immune cell composition and decreases in cytokines that promote immunosuppression. Antitumor efficacy in mice was observed in a range of Fn14 expressing models with pathway activation and expressing either wild-type or mutant p53, BRAF or KRAS suggesting both a patient selection strategy and potential broad clinical applicability. Preclinical mechanism of action hypotheses are supported by Phase I clinical data, with decreases in proliferation markers and increased tumor T cell infiltration.