Project description:This SuperSeries is composed of the following subset Series: GSE28689: CO1 network analysis in poplar GSE28693: CO2 network analysis in poplar Refer to individual Series
Project description:We conducted microarray experiments by comparing constitutive constructs with appropriate controls, followed by the identification of downstream targets of Pro35S:CO1 Four samples of mature leaf tissues were collected from four independent lines of 35S:CO1 and pBI101. RNA was extracted from tissues and hybridized on Affymetrix Genechip Poplar Genome Array.
Project description:The atmosphere CO2 concentration keeps increasing every year. Use the Affymetrix poplar gene chip to confirm the expression changes in key genes in the triploid white poplar due to the influence of elevated CO2 concentrations. We used microarrays to detail the global programme of gene expression under normal and elevated CO2 concentrations.
Project description:The atmosphere CO2 concentration keeps increasing every year. Use the Affymetrix poplar gene chip to confirm the expression changes in key genes in the triploid white poplar due to the influence of elevated CO2 concentrations. We used microarrays to detail the global programme of gene expression under normal and elevated CO2 concentrations. Gene expression of triploid white poplar ((P. tomentosa Ã? P. bolleanaï¼?Ã? P. tomentosa) leaves were investigated by using the Affymetrix poplar genome gene chip, after grown in controlled environment chambers under three different CO2 concentrations. Poplar leaves were subjected to normal CO2 concentrations (T0) and elevated CO2 concentrations (T1, 550 ppm and T2, 720 ppm) treatments three months.
Project description:The Root-lesion nematode (RLN) Pratylenchus coffeae is a major ramie pest causing severe fiber yield loss annual in China. The response mechanism of ramie to RLN-infection is poorly understood. Two RLN-infected plants (Inf1 and Inf2) and two control plants (CO1 and CO2) were individually used to sequence by Illumina pair-end sequencing. About 56.3, 51.7, 43.4 and 45.0 million sequencing reads were generated from the libraries of CO1, CO2, Inf1 and Inf2, respectively. De novo assembly for these 196 million reads yielded 50,486 unigenes with an average length of 853.3 bp. Based on sequence similarity search with known proteins, a total of 24,820 (49.2%) genes were annotated for their function. Comparison of gene expression level between CO and Inf ramie based on the normalized value of read counts per kilobase of exon model per million reads (RPKM) revealed that there were 777 differentially expressed genes (DEGs). Further, these functional category of DEGs were classified by assigning them to gene ontology (GO) and clusters of orthologous group (COG). Pathway enrichment analysis showed that three pathways (Phenylalanine metabolism, Carotenoid biosynthesis and Phenylpropanoid biosynthesis) were severely influenced by RLN-infection. The genome-wide expression profiling of ramie responding to RLN-infection was first characterized. A series of candidate genes and pathways that may contribute to defense response against RLN in ramie will be helpful for further improving the resistance to RLN-infection. A total of four samples, two replicates of control plant (CO1 and CO2) and two replicates of RLN-infected plants (Inf1 and Inf2) were used for RNA-seq.
Project description:Cadmium (Cd)-contamination in soil has been becoming a major environmental problem in China. Ramie, a fiber crop, was frequently proposed to be used as the crop for phytoremediation of Cd-contaminated farmlands. However, high level Cd accumulation can cause a great inhibition of growth in ramie. To understand the potential mechanism for this phenomenon, the ramie genes involved in the Cd stress response were identified using Illumina pair-end sequencing in two Cd-stressed plants (CdS1 and CdS2) and two control plants (CO1 and CO2) in this study. Approximately 48.7, 51.6, 41.2, and 47.1 million clean sequencing reads generated from the libraries of CO1, CO2, CdS1, and CdS2, respectively, were De novo assembled to yield 56,932 non-redundant unigenes. A total of 26,686 (46.9%) genes were annotated for their function. Comparison of gene expression levels between CO and CdS ramie revealed 155 differentially expressed genes (DEGs). Sixteen DEGs was further confirmed their expression difference by real-time quantitative PCR (qRT-PCR). Among these 16 DEGs, 2 genes encoding GA2-oxidase which is a major enzyme for deactivating bioactive gibberellins (GAs) were found with a markedly up-regulated expression, which is possibly responsible for the growth inhibition of Cd-stressed ramie. Pathway enrichment analysis revealed that a pathway (Cutin, suberine and wax biosynthesis) was markedly enriched by DEGs. The discovery of these Cd stress-responsive genes and pathways will be helpful for further understanding the mechanism of Cd-stressed response and improving the ability of Cd stress tolerance in ramie. A total of four samples, two replicates of control plants (CO1 and CO2) and two replicates of cadmium-stressed plants (CdS1 and CdS2) were used for RNA-seq.
Project description:Plasma membrane intrinsic proteins (PIPs) are one subfamily of aquaporins that mediate the transmembrane transport of water. To reveal their function in poplar, we generated transgenic poplar plants in which the translation of PIP genes was downregulated by RNA interference investigated these plants with a comprehensive leaf plasma membrane proteome and physiome analysis. First, inhibition of PIP synthesis strongly altered the leaf plasma membrane protein composition. Strikingly, several signaling components and transporters involved in the regulation of stomatal movement were differentially regulated in transgenic poplars. Furthermore, hormonal crosstalk related to abscisic acid, auxin and brassinosteroids was altered, in addition to cell wall biosynthesis/cutinization, the organization of cellular structures and membrane trafficking. A physiological analysis confirmed the proteomic results. The leaves had wider opened stomata and higher net CO2 assimilation and transpiration rates as well as greater mesophyll conductance for CO2 (gm) and leaf hydraulic conductance (Kleaf). Based on these results, we conclude that PIP proteins not only play essential roles in whole leaf water and CO2 flux but have important roles in the regulation of stomatal movement.
Project description:The Root-lesion nematode (RLN) Pratylenchus coffeae is a major ramie pest causing severe fiber yield loss annual in China. The response mechanism of ramie to RLN-infection is poorly understood. Two RLN-infected plants (Inf1 and Inf2) and two control plants (CO1 and CO2) were individually used to sequence by Illumina pair-end sequencing. About 56.3, 51.7, 43.4 and 45.0 million sequencing reads were generated from the libraries of CO1, CO2, Inf1 and Inf2, respectively. De novo assembly for these 196 million reads yielded 50,486 unigenes with an average length of 853.3 bp. Based on sequence similarity search with known proteins, a total of 24,820 (49.2%) genes were annotated for their function. Comparison of gene expression level between CO and Inf ramie based on the normalized value of read counts per kilobase of exon model per million reads (RPKM) revealed that there were 777 differentially expressed genes (DEGs). Further, these functional category of DEGs were classified by assigning them to gene ontology (GO) and clusters of orthologous group (COG). Pathway enrichment analysis showed that three pathways (Phenylalanine metabolism, Carotenoid biosynthesis and Phenylpropanoid biosynthesis) were severely influenced by RLN-infection. The genome-wide expression profiling of ramie responding to RLN-infection was first characterized. A series of candidate genes and pathways that may contribute to defense response against RLN in ramie will be helpful for further improving the resistance to RLN-infection.