Project description:Faced by an alarming incidence of metabolic diseases including obesity and type 2 diabetes worldwide, there is an urgent need for effective strategies for preventing and treating these common diseases. The nuclear receptor PPARγ (peroxisome proliferator-activated receptor gamma) plays a crucial role in metabolism. We isolated the amorfrutins from edible parts of the plants Glychyrrhiza foetida and Amorpha fruticosa, and identified these natural products as a new chemical class to treat insulin resistance and diabetes by selectively activating PPARγ. In contrast to existing synthetic PPARγ drugs, the amorfrutins display unique properties by separating insulin sensitization from unwanted side effects. In obese mouse models, amorfrutin treatment significantly improved important metabolic and inflammatory parameters. In summary, PPARγ activation by selective amorfrutins derived from edible biomaterial is a promising approach to combat metabolic diseases and other diseases in which PPARγ is involved in.
Project description:Faced by an alarming incidence of metabolic diseases including obesity and type 2 diabetes worldwide, there is an urgent need for effective strategies for preventing and treating these common diseases. The nuclear receptor PPARM-NM-3 (peroxisome proliferator-activated receptor gamma) plays a crucial role in metabolism. We isolated the amorfrutins from edible parts of the plants Glychyrrhiza foetida and Amorpha fruticosa, and identified these natural products as a new chemical class to treat insulin resistance and diabetes by selectively activating PPARM-NM-3. In contrast to existing synthetic PPARM-NM-3 drugs, the amorfrutins display unique properties by separating insulin sensitization from unwanted side effects. In obese mouse models, amorfrutin treatment significantly improved important metabolic and inflammatory parameters. In summary, PPARM-NM-3 activation by selective amorfrutins derived from edible biomaterial is a promising approach to combat metabolic diseases and other diseases in which PPARM-NM-3 is involved in. GSM701612-GSM701623: Male DIO C57BL/6 mice (age 18 wks), 3 groups (n=4 each after pooling of 8 samples per group). Mice were fed over 3 wks with high fat diet (HFD) without compound (vehicle), HFD with 4 mg/kg/d rosiglitazone or with 100 mg/kg/d amorfrutin 1. Liver RNA extracted. --> 4 biological replicates, vehicle vs. rosiglitazone or amorfrutin 1 GSM702299-GSM702344: Biological replicates (n = 3-4 each) of human primary adipocytes were treated with the following compounds for 24 hours. 10M-BM-5M rosiglitazone, 10M-BM-5M pioglitazone, 30M-BM-5M telmisartan, 10M-BM-5M nTZDpa, 30M-BM-5M amorfrutin 1, 30M-BM-5M amorfrutin 2, 30M-BM-5M amorfrutin 3 or 30M-BM-5M amorfrutin 4 vs. 0.1% DMSO (vehicle)
Project description:SNPs affecting disease risk often reside in non-coding genomic regions. Here we show that SNPs are highly enriched at mouse strain-selective adipose tissue binding sites for PPARγ, a nuclear receptor for antidiabetic drugs. Many such SNPs alter binding motifs for PPARγ or cooperating factors, and functionally regulate nearby genes whose expression is strain-selective and imbalanced in heterozygous F1 mice. Moreover, genetically-determined binding of PPARγ accounts for mouse strain-specific transcriptional effects of TZD drugs, providing proof-of- concept for personalized medicine related to nuclear receptor genomic occupancy. In human fat, motif-altering SNPs cause differential PPARγ binding, provide a molecular mechanism for some expression quantitative trait loci, and are risk factors for dysmetabolic traits in genome- wide association studies. One PPARγ motif-altering SNP is associated with HDL levels and other metabolic syndrome parameters. Thus, natural genetic variation in PPARγ genomic occupancy determines individual disease risk and drug response. 6 ChIP-seq experiments conducted in mice and 5 in human subjects. Deep sequencing carried out using Illumina HiSeq2000 and the Solexa Analysis Pipeline eWAT; epididymal White Adipose Tissue iWAT; inguinal White Adipose Tissue 12wLFD; mice were fed a control low fat diet (Research Diet D12450B) chow; mice were fed standard rodent chow Diet GR; Glucocorticoid receptor
Project description:SNPs affecting disease risk often reside in non-coding genomic regions. Here we show that SNPs are highly enriched at mouse strain-selective adipose tissue binding sites for PPARγ, a nuclear receptor for antidiabetic drugs. Many such SNPs alter binding motifs for PPARγ or cooperating factors, and functionally regulate nearby genes whose expression is strain-selective and imbalanced in heterozygous F1 mice. Moreover, genetically-determined binding of PPARγ accounts for mouse strain-specific transcriptional effects of TZD drugs, providing proof-of- concept for personalized medicine related to nuclear receptor genomic occupancy. In human fat, motif-altering SNPs cause differential PPARγ binding, provide a molecular mechanism for some expression quantitative trait loci, and are risk factors for dysmetabolic traits in genome- wide association studies. One PPARγ motif-altering SNP is associated with HDL levels and other metabolic syndrome parameters. Thus, natural genetic variation in PPARγ genomic occupancy determines individual disease risk and drug response.
Project description:SNPs affecting disease risk often reside in non-coding genomic regions. Here we show that SNPs are highly enriched at mouse strain-selective adipose tissue binding sites for PPARγ, a nuclear receptor for antidiabetic drugs. Many such SNPs alter binding motifs for PPARγ or cooperating factors, and functionally regulate nearby genes whose expression is strain-selective and imbalanced in heterozygous F1 mice. Moreover, genetically-determined binding of PPARγ accounts for mouse strain-specific transcriptional effects of TZD drugs, providing proof-of- concept for personalized medicine related to nuclear receptor genomic occupancy. In human fat, motif-altering SNPs cause differential PPARγ binding, provide a molecular mechanism for some expression quantitative trait loci, and are risk factors for dysmetabolic traits in genome- wide association studies. One PPARγ motif-altering SNP is associated with HDL levels and other metabolic syndrome parameters. Thus, natural genetic variation in PPARγ genomic occupancy determines individual disease risk and drug response.
Project description:PPARγ is known for its anti-inflammatory actions in macrophages. However, which macrophage populations express PPARγ in vivo and how it regulates tissue homeostasis in the steady state and during inflammation is not completely understood. We show that lung and spleen macrophages constitutively expressed PPARγ, while other macrophage populations did not. Recruitment of monocytes to sites of inflammation was associated with induction of PPARγ as they differentiated to macrophages. Its absence in these macrophages led to failed resolution of inflammation, characterized by persistent, low-level recruitment of leukocytes. Conversely, PPARγ agonists supported an earlier cessation in leukocyte recruitment during resolution of acute inflammation and likewise suppressed monocyte recruitment to chronically inflamed atherosclerotic vessels. In the steady state, PPARγ deficiency in macrophages had no obvious impact in the spleen but profoundly altered cellular lipid homeostasis in lung macrophages. Reminiscent of pulmonary alveolar proteinosis, LysM-Cre x PPARγflox/flox mice displayed mild leukocytic inflammation in the steady-state lung and succumbed faster to mortality upon infection with S. pneumoniae. Surprisingly, this mortality was not due to overly exuberant inflammation, but instead to impaired bacterial clearance. Thus, in addition to its anti-inflammatory role in promoting resolution of inflammation, PPARγ sustains functionality in lung macrophages and thereby has a pivotal role in supporting pulmonary host defense. The two major subsets of monocytes (Ly-6C+ and Ly-6Clo) from 12-week old C57Bl/6 mice were sorted and the RNA extracted and hybridized to Affymetrix GeneChip® 430 2.0 arrays. We pooled leukocytes from 5 mice for each sort and sorted 3 to 4 separate times for 3 to 4 biological replicates.
Project description:In addition to their role in the development and function of the reproductive system, estrogens have significant anti-inflammatory properties. Although both estrogen receptors (ERs) can mediate anti-inflammatory actions, ERbeta is a more desirable therapeutic target because ERalpha mediates the proliferative effects of estrogens on the mammary gland and uterus. In fact, selective ERbeta agonists have beneficial effects in preclinical models involving inflammation without causing growth-promoting effects on the uterus or mammary gland. However, their mechanism of action is unclear. The purpose of this study was to use microarray analysis to determine whether ERbeta-selective compounds produce their anti-inflammatory effects by repressing transcription of proinflammatory genes. We identified 49 genes that were activated by TNF-alpha in human osteosarcoma U2OS cells expressing ERbeta. Estradiol treatment significantly reduced the activation by TNF-alpha on 18 genes via ERbeta or ERalpha. Most repressed genes were inflammatory genes, such as TNF-alpha, IL-6, and CSF2. Three ERbeta-selective compounds, ERB-041, WAY-202196, and WAY-214156, repressed the expression of these and other inflammatory genes. ERB-041 was the most ERbeta-selective compound, whereas WAY-202196 and WAY-214156 were the most potent. The ERbeta-selective compounds repressed inflammatory genes by recruiting the coactivator, SRC-2. ERB-041 also repressed cytokine genes in PBMCs, demonstrating that ERbeta-selective estrogens have anti-inflammatory properties in immune cells. Our study suggests that the anti-inflammatory effects of ERB-041 and other ERbeta-selective estrogens in animal models are due to transcriptional repression of proinflammatory genes. These compounds might represent a new class of drugs to treat inflammatory disorders. Keywords: estrogen receptor, gene regulation, TNF
Project description:PPARγ is known for its anti-inflammatory actions in macrophages. However, which macrophage populations express PPARγ in vivo and how it regulates tissue homeostasis in the steady state and during inflammation is not completely understood. We show that lung and spleen macrophages constitutively expressed PPARγ, while other macrophage populations did not. Recruitment of monocytes to sites of inflammation was associated with induction of PPARγ as they differentiated to macrophages. Its absence in these macrophages led to failed resolution of inflammation, characterized by persistent, low-level recruitment of leukocytes. Conversely, PPARγ agonists supported an earlier cessation in leukocyte recruitment during resolution of acute inflammation and likewise suppressed monocyte recruitment to chronically inflamed atherosclerotic vessels. In the steady state, PPARγ deficiency in macrophages had no obvious impact in the spleen but profoundly altered cellular lipid homeostasis in lung macrophages. Reminiscent of pulmonary alveolar proteinosis, LysM-Cre x PPARγflox/flox mice displayed mild leukocytic inflammation in the steady-state lung and succumbed faster to mortality upon infection with S. pneumoniae. Surprisingly, this mortality was not due to overly exuberant inflammation, but instead to impaired bacterial clearance. Thus, in addition to its anti-inflammatory role in promoting resolution of inflammation, PPARγ sustains functionality in lung macrophages and thereby has a pivotal role in supporting pulmonary host defense.
Project description:We characterized the insulin sensitivity and multi-tissue gene expression profiles of lean and insulin resistant, obese Zucker rats untreated or treated with one of four PPARγ ligands (pioglitazone, rosiglitazone, troglitazone, and AG035029). We analyzed the transcriptional profiles of adipose tissue, skeletal muscle, and liver from the rats and determined whether ligand insulin-sensitizing potency was related to ligand-induced alteration of functional pathways. Ligand treatments improved insulin sensitivity in obese rats, albeit to varying degrees. Male Zucker fatty (fa/fa) and lean (fa/+) rats (Charles River, Wilmington, MA) were received at 6 weeks of age. Fatty rats were weight-matched upon arrival and randomly divided into one of five experimental groups. The fatty rat groups varied by the type of chow they were fed - normal chow alone or with a PPARγ ligand admixture: normal chow (fatty control, FC), rosiglitazone-treated (Rosi), pioglitazone-treated (Pio), troglitazone-treated (Tro), or AG035029-treated (AG). Lean control (LC) rats were all fed normal chow. Rats groups were maintained on the diets for 21 days. Adipose tissue (epididymal), skeletal muscle (gastrocnemius), and liver were harvested from lean (LC) and insulin resistant, obese Zucker rats untreated (FC) or treated with one of four PPARγ ligands (pioglitazone [Pio], rosiglitazone [Rosi], troglitazone [Tro], and AG035029 [AG]).