Project description:Comparing the gene expression profiling of HDGF-silenced RD-ES cells and control RD-ES cells to identify genes regulated by HDGF in RD-ES cells. Keywords: expression analysis Control RD-ES cells and HDGF-silenced RD-ES cells were profiled on 22K Human Genome Array
Project description:Intervention type:DRUG. Intervention1:Huaier, Dose form:GRANULES, Route of administration:ORAL, intended dose regimen:20 to 60/day by either bulk or split for 3 months to extended term if necessary. Control intervention1:None.
Primary outcome(s): For mRNA libraries, focus on mRNA studies. Data analysis includes sequencing data processing and basic sequencing data quality control, prediction of new transcripts, differential expression analysis of genes. Gene Ontology (GO) and the KEGG pathway database are used for annotation and enrichment analysis of up-regulated genes and down-regulated genes.
For small RNA libraries, data analysis includes sequencing data process and sequencing data process QC, small RNA distribution across the genome, rRNA, tRNA, alignment with snRNA and snoRNA, construction of known miRNA expression pattern, prediction New miRNA and Study of their secondary structure Based on the expression pattern of miRNA, we perform not only GO / KEGG annotation and enrichment, but also different expression analysis.. Timepoint:RNA sequencing of 240 blood samples of 80 cases and its analysis, scheduled from June 30, 2022..
Project description:We have sequenced miRNA libraries from human embryonic, neural and foetal mesenchymal stem cells. We report that the majority of miRNA genes encode mature isomers that vary in size by one or more bases at the 3’ and/or 5’ end of the miRNA. Northern blotting for individual miRNAs showed that the proportions of isomiRs expressed by a single miRNA gene often differ between cell and tissue types. IsomiRs were readily co-immunoprecipitated with Argonaute proteins in vivo and were active in luciferase assays, indicating that they are functional. Bioinformatics analysis predicts substantial differences in targeting between miRNAs with minor 5’ differences and in support of this we report that a 5’ isomiR-9-1 gained the ability to inhibit the expression of DNMT3B and NCAM2 but lost the ability to inhibit CDH1 in vitro. This result was confirmed by the use of isomiR-specific sponges. Our analysis of the miRGator database indicates that a small percentage of human miRNA genes express isomiRs as the dominant transcript in certain cell types and analysis of miRBase shows that 5’ isomiRs have replaced canonical miRNAs many times during evolution. This strongly indicates that isomiRs are of functional importance and have contributed to the evolution of miRNA genes
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:The alterations in myometrial biology during labor are not well understood. The myometrium is the contractile portion of the uterus and contributes to labor, a process that may be regulated by the steroid hormone progesterone. Thus, human myometrial tissues from term pregnant in-active-labor (TIL) and term pregnant not-in-labor (TNIL) subjects were used for genome-wide analyses to elucidate potential future preventive or therapeutic targets involved in the regulation of labor. Using myometrial tissues directly subjected to RNA sequencing (RNA-seq), progesterone receptor (PGR) chromatin immunoprecipitation sequencing (ChIP-seq), and histone modification ChIP-seq, we profiled genome-wide changes associated with gene expression in myometrial smooth muscle tissue in vivo. In TIL myometrium, PGR occupied predominatly promoter regions including the classical progesterone response element, whereas it bound predominantly to intergenic regions in TNIL myometrial tissue. Differential binding analysis uncovered over 1700 differential PGR-bound sites between TIL and TNIL with 1361 sites gained and 428 lost in labor. Functional analysis identified multiple pathways involved in cAMP-mediated signaling enriched in labor. A three-way integration of the data for ChIP-seq, RNA-seq and active histone marks uncovered the following genes associated with PGR binding, transcriptional activation and altered mRNA levels: ATP11A, CBX7, and TNS1. In vitro studies showed that ATP11A, CBX7, and TNS1 are progesterone responsive. We speculate that these genes may contribute to the contractile phenotype of the myometrium during various stages of labor. In conclusion, we provide novel labor associated genome-wide events and PGR-target genes that can serve as targets for future mechanistic studies.
Project description:The alterations in myometrial biology during labor are not well understood. The myometrium is the contractile portion of the uterus and contributes to labor, a process that may be regulated by the steroid hormone progesterone. Thus, human myometrial tissues from term pregnant in-active-labor (TIL) and term pregnant not-in-labor (TNIL) subjects were used for genome-wide analyses to elucidate potential future preventive or therapeutic targets involved in the regulation of labor. Using myometrial tissues directly subjected to RNA sequencing (RNA-seq), progesterone receptor (PGR) chromatin immunoprecipitation sequencing (ChIP-seq), and histone modification ChIP-seq, we profiled genome-wide changes associated with gene expression in myometrial smooth muscle tissue in vivo. In TIL myometrium, PGR occupied predominatly promoter regions including the classical progesterone response element, whereas it bound predominantly to intergenic regions in TNIL myometrial tissue. Differential binding analysis uncovered over 1700 differential PGR-bound sites between TIL and TNIL with 1361 sites gained and 428 lost in labor. Functional analysis identified multiple pathways involved in cAMP-mediated signaling enriched in labor. A three-way integration of the data for ChIP-seq, RNA-seq and active histone marks uncovered the following genes associated with PGR binding, transcriptional activation and altered mRNA levels: ATP11A, CBX7, and TNS1. In vitro studies showed that ATP11A, CBX7, and TNS1 are progesterone responsive. We speculate that these genes may contribute to the contractile phenotype of the myometrium during various stages of labor. In conclusion, we provide novel labor associated genome-wide events and PGR-target genes that can serve as targets for future mechanistic studies.
Project description:Infiltration of human myometrium and cervix with leukocytes and formation of a pro-inflammatory environment within the uterus has been associated with the initiation of both term and preterm parturition. The mechanism regulating the onset of this pro-inflammatory cascade is not fully elucidated. We demonstrate that prokineticin 1 (PROK1) is up-regulated in human myometrium and placenta during labour. Gene array analysis identified 65 genes up-regulated by PROK1 in human myometrium, mainly cytokines and chemokines including: Interleukin-1beta (IL1B), chemokine C-C motif ligand 3 (CCL3) and Colony Stimulating Factor 3 (CSF3). We additionally demonstrate that PROK1 increases expression of chemokines C-C motif ligand 20 (CCL20), Interleukin-6 (IL-6), Interleukin-8 (IL-8), prostaglandin synthase 2 (PTGS2) and prostaglandin E2 and F2? secretion. We propose that PROK1 is a novel inflammatory mediator that can contribute to onset of human parturition at term and partially mediate premature onset of inflammatory pathways during bacterial infection. Total RNA was extracted from human term non-labour myometrium explants treated with prokineticin for 6 and 24 hours compared to vehicle-treated explants. Six biological replicates were analyzed for each treatment and time point. Two of the 6-hour vehicle samples failed a quality-control analysis and were substituted with a 4-hour vehicle treatment from the same tissue sample in each case.