Project description:We established two clones of induced pluripotent stem cells (iPSC) with the presenilin 2 mutation, N141 (PS2-1 iPSC and PS2-2 iPSC) by retroviral transduction of primary human fibroblasts. To detect the copy number dependent gene expression profiles in primary fibroblast carrying the presenilin 2 mutation N141(before reprogramming) and PS2-1 iPSC and PS2-2 iPSC(after reprogramming), this experiment was designed. Genomic DNA of primary fibroblasts carrying the presenilin 2 mutation N141 and undifferentiated PS2-1 iPSC and PS2-2 iPSC were collected. Then, they were applied in this experiment.
Project description:We established two clones of induced pluripotent stem cells (iPSC) with the presenilin 2 mutation, N141 (PS2-1 iPSC and PS2-2 iPSC) by retroviral transduction of primary human fibroblasts. To show the similarity among 201B7 iPSC, PD01-25 iPSC(Sporadic Parkinson's disease patient derived iPSC), PS2-1 iPSC, PS2-2 iPSC, this experiment was designed.
Project description:We established two clones of induced pluripotent stem cells (iPSC) with the presenilin 2 mutation, N141 (PS2-1 iPSC and PS2-2 iPSC) by retroviral transduction of primary human fibroblasts. To show the similarity among 201B7 iPSC, PD01-25 iPSC(Sporadic Parkinson's disease patient derived iPSC), PS2-1 iPSC, PS2-2 iPSC, this experiment was designed. Undifferentiated 201B7 iPSC, PD01-25 iPSC, PS2-1 iPSC and PS2-2 iPSC were collected. Then, they were applied in this experiment.
Project description:We established two clones of induced pluripotent stem cells (iPSC) with the presenilin 2 mutation, N141 (PS2-1 iPSC and PS2-2 iPSC) by retroviral transduction of primary human fibroblasts. To detect the copy number dependent gene expression profiles in primary fibroblast carrying the presenilin 2 mutation N141(before reprogramming) and PS2-1 iPSC and PS2-2 iPSC(after reprogramming), this experiment was designed.
Project description:We have generated expression profiles of induced pluripotent stem cells (iPSCs) and iPSC-derived neural crest populations from Familial Dysautonomia patients. These profiles were compared to a normal iPSC line that does not harbor the IKBKAP mutation. All cell types were differentiated from patient derived iPSCs. Bulk iPSCs were harvested for RNA and the neural crest populations were sorted on day 18 for p75/HNK1 before RNA isolation.
Project description:Alzheimer’s disease is the most common form of age-related dementia. At least 15 mutations in the human gene PRESENILIN 2 (PSEN2) have been found to cause familial Alzheimer’s disease (fAD). Zebrafish possess an orthologous gene, psen2, and present opportunities for investigation of PRESENILIN function related to Alzheimer’s disease. The most prevalent and best characterized fAD mutation in PSEN2 is N141I. The equivalent codon in zebrafish psen2 is N140. We used genome editing technology in zebrafish to target generation of mutations to the N140 codon. We isolated two mutations: psen2N140fs, causing truncation of the coding sequence, and psen2T141_L142delinsMISLISV, that deletes the two codons immediately downstream of N140 and replaces them with seven codons coding for amino acid residues MISLISV. Thus, like almost every fAD mutation in the PRESENILIN genes, this latter mutation does not truncate the gene’s open reading frame.
Project description:Oligomeric forms of amyloid-beta peptide (Abeta) are presumed to play a pivotal role in the pathogenesis of Alzheimer’s disease (AD). However, it is still unclear how Abeta oligomers contribute to AD pathogenesis in patient neural cells. We generated induced pluripotent stem cells (iPSCs) from a familial AD patient and differentiated them into neural cells. Abeta oligomers were accumulated in neural cells of AD bearing amyloid precursor protein (APP)-E693delta mutation. To uncover Abeta oligomers in AD(APP-E693delta) neural cells, we analyzed gene expression profiles of control and the AD neural cells
Project description:The hippocampus is important for memory formation and is severely affected in the brain with Alzheimer's disease (AD). Since AD brain tissue is available postmortem, our understanding of early pathogenic processes occurring in hippocampi remains speculative. Here, an MS-based proteomic approach was used to analyze free-floating hippocampal spheroids (HSs) enriched in PROX1-positive granule neurons, from induced pluripotent stem cells (iPSCs) of healthy individuals and AD patients. HSs generated from two AD patients carrying variations in amyloid precursor protein (APP) or presenilin 1 (PS1) genes, and their age and gender matched controls.
Project description:Genetic mutations on leucine-rich repeat kinase 2 (LRRK2) have been associated with an increased risk of Parkinson's disease. The Gly2019Ser (G2019S) mutation on LRRK2 gene is a relatively common cause of familial Parkinson's disease in Caucasian population. In this study, we generated human induced pluripotent stem cell (iPSC) lines from LRRK2 (G2019S) bearing patient fibroblasts by cell reprogramming. We performed global gene expression profiling of LRRK2 (G2019S) heterozygous and homozygous patient iPSC lines, and the corresponding fibroblast lines they originated from. An age-matched wildtype human fibroblast line and H1 human embryonic stem cell (ESC) line were used as controls. Microarray gene expression profiling was done to: (1) Compare global gene expression differences between wildtype fibroblasts and fibroblasts from patients bearing homozygous and heterozygous LRRK2 (G2019S) mutation; (2) Compare global gene expression differences between wildtype iPSC and iPSC generated from LRRK2 (G2019S) homozygous and heterozygous patients; (3) Check that all iPSC generated from wildtype and patients fibroblasts are in fact similar to human pluripotent ESC.