Project description:How early- and late-firing origins are selected on eukaryotic chromosomes is largely unknown. Here we show that Mrc1, a conserved factor required for stabilization of stalled replication forks, selectively binds to the early-firing origins in a manner independent of Cdc45 and Hsk1 kinase in fission yeast. In mrc1∆ (and in swi1∆ to some extent), efficiency of firing is stimulated and its timing is advanced selectively at those origins that are normally bound by Mrc1. In contrast, the late or inefficient origins which are not bound by Mrc1 are not activated in mrc1∆. The enhanced firing and precocious Cdc45 loading at Mrc1-bound early-firing origins are not observed in a checkpoint mutant of mrc1, suggesting that non-checkpoint function is involved in maintaining the normal program of early-firing origins. We propose that pre-firing binding of Mrc1 is an important marker of early-firing origins which are precociously activated by the absence this protein. Mrc1 binding profiles at G1/S boundary or early S-phase in wild type vs hsk1-89 mutant.
Project description:DNA replication is initiated at multiple sites or origins enriched with AT-rich sequences at various times during the S-phase. While current studies of genome-wide DNA replication profiles have focused on the timing of replication and the location of origins, the efficiency of replication/firing at various origins remains unclear. In this study, we show different efficiencies of DNA replication at various loci by using ORF-specific DNA microarrays. DNA copy-number increases as a function of time at individual loci are approximated to near-sigmoidal models for estimation of replication initiation and completion timings in HU-challenged cells. Duplicating times (from initiation to completion) vary from loci to loci, partly contributing to various firing efficiencies at origins. DNA replication timing profiles are strikingly similar to the reported patterns of enriched ssDNA, suggesting that majority stalled forks are restored for resumption of DNA replication. Although the DNA replication timing profiles are disrupted in HU-challenged cds1? cells, ~85% of potential origins overlapped with those found in wild type cells, significantly, most of which represents inefficiently fired origins in wild type cells. Together, our result indicates that replication checkpoint plays a role in monitoring efficient origins and thus maintaining global DNA replication patterns in HU-challenged cells. Keywords: WT or Cds1 HU synchronized cells released in HU free media and harvested at different time points vs WT or Cds1 synchronized with HU for 3 hrs. We analyzed 32 arrays for WT and 38 arrays for Cds1 cells which were synchronized with HU and released in HU free media and harvested at different time points. At least two biological repeats were done for each time points.
Project description:Mrc1 is a conserved checkpoint mediator protein that transduces replication-stress signal to downstream effector kinase. Loss of mrc1 checkpoint activity results in aberrant activation of late/dormant origins in the presence of hydroxyurea. Mrc1 was also suggested to regulate orders of early-origin firing in a checkpoint-independent manner, but its mechanism was unknown. Here we identify HBS (Hsk1 Bypass Segment) on Mrc1. ∆HBS does not suppress late/dormant origin firing in the presence of hydroxyurea but causes precocious and enhanced activation of weak early-firing origins during normal S-phase progression, and bypasses the requirement of Hsk1 for growth. This may be caused by disruption of intramolecular binding between HBS and NTHBS (N-terminal-Target-of-HBS). Hsk1 binds to Mrc1 through HBS and phosphorylates a segment adjacent to NTHBS, disrupting intramolecular interaction. We propose that Mrc1 exerts “brake” on initiation (through intra-molecular interaction) and this brake can be released (upon loss of intra-molecular interaction) by either Hsk1-mediated phosphorylation of Mrc1 or deletion of HBS (or phosphomimic mutation) which can bypass the function of Hsk1 for growth. The “brake” mechanism may explain the checkpoint-independent regulation of early origin firing in fission yeast.
Project description:DNA replication origins, or DNA sites pre-RC is bound to, were identified by ChIP-seq of pre-RC components, Orc4 and Mcm2. DNA copy number analysis revealed that ~40% of the detected sites were efficient and early-firing origins.
Project description:Cdc7/Hsk1 is a conserved kinase required for initiation of DNA replication that potentially regulates timing and locations of replication origin firing. Here, we show that viability of fission yeast hsk1∆ cells can be restored by loss of mrc1, which is required for maintenance of replication fork integrity, by cds1∆, or by a checkpoint-deficient mutant of mrc1. In these mutants, normally inactive origins are activated in the presence of HU and binding of Cdc45 to MCM is stimulated. mrc1∆ bypasses hsk1∆ more efficiently because of its checkpoint-independent inhibitory functions. Unexpectedly, hsk1∆ is viable at 37°C. More DNA is synthesized, and some dormant origins fire in the presence of HU at 37°C. On the other hand, hsk1∆ bypass strains grow poorly at 25°C compared to at higher temperatures. Our results show that Hsk1 functions for DNA replication can be bypassed by different genetic backgrounds as well as under varied physiological conditions, providing additional evidence for plasticity of the replication program in eukaryotes. BrdU incorporation profiles at early S-phase in mrc1∆, cds1∆ and hsk1-89 mutants.
Project description:DNA replication is initiated at multiple sites or origins enriched with AT-rich sequences at various times during the S-phase. While current studies of genome-wide DNA replication profiles have focused on the timing of replication and the location of origins, the efficiency of replication/firing at various origins remains unclear. In this study, we show different efficiencies of DNA replication at various loci by using ORF-specific DNA microarrays. DNA copy-number increases as a function of time at individual loci are approximated to near-sigmoidal models for estimation of replication initiation and completion timings in HU-challenged cells. Duplicating times (from initiation to completion) vary from loci to loci, partly contributing to various firing efficiencies at origins. DNA replication timing profiles are strikingly similar to the reported patterns of enriched ssDNA, suggesting that majority stalled forks are restored for resumption of DNA replication. Although the DNA replication timing profiles are disrupted in HU-challenged cds1? cells, ~85% of potential origins overlapped with those found in wild type cells, significantly, most of which represents inefficiently fired origins in wild type cells. Together, our result indicates that replication checkpoint plays a role in monitoring efficient origins and thus maintaining global DNA replication patterns in HU-challenged cells. Keywords: WT or Cds1 HU synchronized cells released in HU free media and harvested at different time points vs WT or Cds1 synchronized with HU for 3 hrs.