Project description:Dietary glucosylceramide (GC) improves skin barrier function. To elucidate the molecular mechanisms involved, we used a microarray system to analyze mRNA expression in SDS-treated dorsal skin of hairless mouse. Transepidermal water loss of mouse skin was increased by SDS treatment and the increase was significantly reduced by prior oral administration of glucosylceramides. Microarray-evaluated mRNA expression ratios showed statistically significant increase of expression of genes related to cornified envelope and tight junction formation versus all genes in glucosylceramide-fed/SDS-treated mouse skin. We then examined the contribution of glucosylceramide metabolites to tight junction formation of cultured keratinocytes. SDS treatment of cultured keratinocytes significantly decreased the transepidermal electrical resistance, and the decrease was significantly ameliorated in the presence of sphingosine or phytosphingosine, the major metabolites of glucosylceramide. These results suggest that oral administration of glucosylceramide improves skin barrier function by upregulating genes associated with both cornified envelope and tight junction formation. Two-condition experiment, effect of oral intake of GC on mice skin before SDS treatment (0d), and after SDS treatment(2d), Biological replicates: 3 replicates for 0d, 4 replicates for 2d.
Project description:The aim of this study was to assess whether chronic treatment with RPV can modulate the progression of chronic liver disease, especially of non-alcoholic fatty liver disease (NAFLD), through a nutritional model in wild-type mice Mice were daily treated with RPV (p.o.) and fed with normal or high fat diet during 3 months to induce fatty liver disease
Project description:Purpose: To study the alteration of whole transcriptome of Lewis lung carcinoma (LLC) cells after the decreasing of malignant properties of tumor by treatment of tumor-bearing mice with RNase A. Methods: Whole transcriptome profile of Lewis lung carcinoma before and after RNase A treatment were generated by deep sequencing using SOLiD 5.5. The sequence reads were mapped by Bioscope 1.3 software, differential expression was evaluated by Cufflinks v.2.0.1 package. Results: Difference in expression was found for 966 genes. Conclusions: Our study represents the first detailed analysis of alteration of transcriptome of Lewis lung carcinoma after the decrease of malignant prtoperties of the tumor (proliferation and invasion) by RNase A.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:The impact of high fat diet on secreted milk small RNA transcriptome was studied by isolating total RNA from milk fat fraction collected on lactation day 10 from control diet fed (C; n=5; 10% fat; 7% sucrose; Research Diets #D12450J, Brunswick, NJ) and high fat diet fed (HF; n=4; Research Diets #D12492, 60% of total kcal energy is fat and match 7% of total kcal is sucrose; Brunswick, NJ) mice.
Project description:Dietary glucosylceramide (GC) improves skin barrier function. To elucidate the molecular mechanisms involved, we used a microarray system to analyze mRNA expression in SDS-treated dorsal skin of hairless mouse. Transepidermal water loss of mouse skin was increased by SDS treatment and the increase was significantly reduced by prior oral administration of glucosylceramides. Microarray-evaluated mRNA expression ratios showed statistically significant increase of expression of genes related to cornified envelope and tight junction formation versus all genes in glucosylceramide-fed/SDS-treated mouse skin. We then examined the contribution of glucosylceramide metabolites to tight junction formation of cultured keratinocytes. SDS treatment of cultured keratinocytes significantly decreased the transepidermal electrical resistance, and the decrease was significantly ameliorated in the presence of sphingosine or phytosphingosine, the major metabolites of glucosylceramide. These results suggest that oral administration of glucosylceramide improves skin barrier function by upregulating genes associated with both cornified envelope and tight junction formation.
Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility.
Project description:Purpose: To study the alteration of whole transcriptome of Lewis lung carcinoma (LLC) cells after the decreasing of malignant properties of tumor by treatment of tumor-bearing mice with RNase A. Methods: Whole transcriptome profile of Lewis lung carcinoma before and after RNase A treatment were generated by deep sequencing using SOLiD 5.5. The sequence reads were mapped by Bioscope 1.3 software, differential expression was evaluated by Cufflinks v.2.0.1 package. Results: Difference in expression was found for 966 genes. Conclusions: Our study represents the first detailed analysis of alteration of transcriptome of Lewis lung carcinoma after the decrease of malignant prtoperties of the tumor (proliferation and invasion) by RNase A. Whole transcriptome profile of Lewis lung carcinoma before and after RNase A treatment were generated by deep sequencing using SOLiD 5.5.
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.
Project description:The impact of high fat diet on secreted milk small RNA transcriptome was studied by isolating total RNA from milk fat fraction collected on lactation day 10 from control diet fed (C; n=5; 10% fat; 7% sucrose; Research Diets #D12450J, Brunswick, NJ) and high fat diet fed (HF; n=4; Research Diets #D12492, 60% of total kcal energy is fat and match 7% of total kcal is sucrose; Brunswick, NJ) mice.