Project description:Dr. Wong's laboratory is interested in examining if and how the absence of prion protein expression could affect the cellular glycosylation enzymes during development. Prion protein is a glycoprotein and changes in glycosylation on the protein have been implicated in the pathogenic process. Our objective is to examine if and how the absence of prion protein expression could affect the cellular glycosylation enzymes during development. To do this, we proposed to compare and contrast the expression profile of the glycosylation enzymes in control and prion protein knockout mouse brain at the age of 2 and 82 weeks (n=3). RNA preparations from control and prion protein knockout mice brain of age ~2 and 82 weeks were sent to the Microarray Core (E). The RNA was amplified, labeled, and hybridized to GLYCOv3 microarrays.
Project description:Dr. Wong's laboratory is interested in examining if and how the absence of prion protein expression could affect the cellular glycosylation enzymes during development.
Project description:A key event in the pathogenic process of prion diseases is the conversion of the cellular prion protein (PrPC) to an abnormal and protease-resistant isoform (PrPSc). Mice lacking PrP are resistant to prion infection, and down-regulation of PrPC during prion infection prevents neuronal loss and the progression to clinical disease. These results are suggestive of the potential beneficial effect of silencing PrPC during prion diseases. However, the silencing of a protein that is widely expressed throughout the CNS could be detrimental to brain homeostasis. The physiological role of PrPC remains still unclear, but several putative functions have been proposed. Among these, several lines of evidence support PrPC function in neuronal development and maintenance. To assess the influence of PrPC on gene expression profile during development in the mouse brain, we undertook a microarray analysis by using RNA isolated from the hippocampus, at two different developmental stages: newborn (4-day-old) and adult (3-month-old) mice, both from Prnp+/+ and Prnp0/0 animals. The comparison of the different datasets allowed us to identify “commonly” co-regulated genes and “uniquely” de-regulated genes during postnatal development in these animal models. The lack of PrPC during neuronal development affected several biological pathways, among which the most representative were cell signaling, cell-cell communication and transduction process. In addition, the absence of PrPC influenced genes involved in calcium homeostasis, nervous system development, synaptic transmission and cell adhesion. There was only a moderate alteration of the gene expression profile during neuronal development in the animal models we studied. PrPC deficiency does not lead to a dramatic alteration of gene expression profile, and produces moderate altered gene expression levels from young to adult animals. Thus, our results may provide additional support to silencing endogenous PrPC levels as a therapeutic approach to prion diseases. To analyze the influence of PrPC expression on CNS gene expression profile during development, we investigated WT PrPC (Prnp+/+) and Prnp0/0 mice at two different developmental stages: in neonatal animals (postnatal day 4, P4) and in adult animals (3 months old). For each developmental stage, hippocampi of 3 (pups) or 4 (adult) animals were dissected immediately after animal sacrifice and promptly processed for RNA extraction and purification, for a total of 14 samples.
Project description:A key event in the pathogenic process of prion diseases is the conversion of the cellular prion protein (PrPC) to an abnormal and protease-resistant isoform (PrPSc). Mice lacking PrP are resistant to prion infection, and down-regulation of PrPC during prion infection prevents neuronal loss and the progression to clinical disease. These results are suggestive of the potential beneficial effect of silencing PrPC during prion diseases. However, the silencing of a protein that is widely expressed throughout the CNS could be detrimental to brain homeostasis. The physiological role of PrPC remains still unclear, but several putative functions have been proposed. Among these, several lines of evidence support PrPC function in neuronal development and maintenance. To assess the influence of PrPC on gene expression profile during development in the mouse brain, we undertook a microarray analysis by using RNA isolated from the hippocampus, at two different developmental stages: newborn (4-day-old) and adult (3-month-old) mice, both from Prnp+/+ and Prnp0/0 animals. The comparison of the different datasets allowed us to identify “commonly” co-regulated genes and “uniquely” de-regulated genes during postnatal development in these animal models. The lack of PrPC during neuronal development affected several biological pathways, among which the most representative were cell signaling, cell-cell communication and transduction process. In addition, the absence of PrPC influenced genes involved in calcium homeostasis, nervous system development, synaptic transmission and cell adhesion. There was only a moderate alteration of the gene expression profile during neuronal development in the animal models we studied. PrPC deficiency does not lead to a dramatic alteration of gene expression profile, and produces moderate altered gene expression levels from young to adult animals. Thus, our results may provide additional support to silencing endogenous PrPC levels as a therapeutic approach to prion diseases.
Project description:This report describes our study of the efficacy and the potential mechanism underlying the anti-prion action of a new anti-prion compound having a glycoside structure in prion-infected cells. The study revealed involvements of two factors in the mechanism of the compound action: interferon and a microtubule nucleation activator, phosphodiesterase 4D interacting protein. In particular, phosphodiesterase 4D interacting protein was suggested to be important in regulating the trafficking or fusion of prion protein-containing vesicles or structures in cells. The findings of the study are expected to be useful not only for the elucidation of cellular regulatory mechanisms of prion protein, but also for the implication of new targets for therapeutic development. Prion-infected N167 cells were treated with either anti-prion glycoside compound (Gly-9) or control glycoside compound (Gly-14) at a dose of 5 M-NM-<g/mL for three days. Then, gene expression profiles were analyzed by DNA microarray analysis. Experiments were performed in quadruplicate.
Project description:This report describes our study of the efficacy and the potential mechanism underlying the anti-prion action of a new anti-prion compound having a glycoside structure in prion-infected cells. The study revealed involvements of two factors in the mechanism of the compound action: interferon and a microtubule nucleation activator, phosphodiesterase 4D interacting protein. In particular, phosphodiesterase 4D interacting protein was suggested to be important in regulating the trafficking or fusion of prion protein-containing vesicles or structures in cells. The findings of the study are expected to be useful not only for the elucidation of cellular regulatory mechanisms of prion protein, but also for the implication of new targets for therapeutic development.
Project description:Prion infection in animals results in neurodegeneration and eventually death. To examine the cellular impact of Prion disease, we profiled non-proliferative fully differentiated C2C12 cells, which can replicate prions to high levels. Results suggest that accumulation of high levels of PrPSc in C2C12 myotubes does not cause any overt cellular dysfunction or molecular pathology.
Project description:Mammalian prion diseases are fatal and transmissible neurological conditions caused by the propagation of prions, self-replicating multimeric assemblies of misfolded forms of host cellular prion protein. Despite extensive studies investigating the changes in transcriptional profiles in prion diseases the mechanisms by which prion diseases induce cellular toxicity, including changes in gene expression profiles are yet to be fully characterized. Here, we took advantage of the recent developments in single-cell technologies and performed an unbiased whole-transcriptome single-nucleus transcriptomic analysis in prion disease.
Project description:Mammalian prion diseases are fatal and transmissible neurological conditions caused by the propagation of prions, self-replicating multimeric assemblies of misfolded forms of host cellular prion protein. Despite extensive studies investigating the changes in transcriptional profiles in prion diseases the mechanisms by which prion diseases induce cellular toxicity, including changes in gene expression profiles are yet to be fully characterized. Here, we took advantage of the recent developments in single-cell technologies and performed an unbiased whole-transcriptome single-nucleus transcriptomic analysis in prion disease.
Project description:Mammalian prion diseases are fatal and transmissible neurological conditions caused by the propagation of prions, self-replicating multimeric assemblies of misfolded forms of host cellular prion protein. Despite extensive studies investigating the changes in transcriptional profiles in prion diseases the mechanisms by which prion diseases induce cellular toxicity, including changes in gene expression profiles are yet to be fully characterized. Here, we took advantage of the recent developments in single-cell technologies and performed an unbiased whole-transcriptome single-nucleus transcriptomic analysis in prion disease.