Project description:During fermentation Saccharomyces yeast produces various aroma-active metabolites determining the different characteristics of aroma and taste in fermented beverages. Amino acid utilization by yeast during brewer´s wort fermentation is seen as linked to flavour profile. To better understand the relationship between the biosynthesis of aroma relevant metabolites and the importance of amino acids, DNA microarrays were performed for Saccharomyces cerevisiae strain S81 and Saccharomyces pastorianus var. carlsbergensis strain S23, respectively. Thereby, changes in transcription of genes were measured, which are associated with amino acid assimilation and its derived aroma-active compounds during fermentation.
Project description:proteome-based techniques were used to compare changes of single culture fermentation and co-fermentation involving Lactobacillus plantarum Sx3 and Saccharomyces cerevisiae Sq7 in sourdough
Project description:During fermentation Saccharomyces yeast produces various aroma-active metabolites determining the different characteristics of aroma and taste in fermented beverages. Amino acid utilization by yeast during brewer´s wort fermentation is seen as linked to flavour profile. To better understand the relationship between the biosynthesis of aroma relevant metabolites and the importance of amino acids, DNA microarrays were performed for Saccharomyces cerevisiae strain S81 and Saccharomyces pastorianus var. carlsbergensis strain S23, respectively. Thereby, changes in transcription of genes were measured, which are associated with amino acid assimilation and its derived aroma-active compounds during fermentation. 48 samples were used in this experiment
Project description:In wine fermentation, the blending of non-Saccharomyces yeast with Saccharomyces cerevisiae to improve the complexity of wine has become common practice, but data regarding the impact on yeast physiology and on genetic and metabolic regulation remain limited. Here we describe a transcriptomic analysis of single species and mixed species fermentations.
Project description:High concenHigh concentration acetic acid in the fermentation medium represses cell growth, metabolism and fermentation efficiency of Saccharomyces cerevisiae, which is widely used for cellulosic ethanol production. Our previous study proved that supplementation of zinc sulfate in the fermentation medium improved cell growth and ethanol fermentation performance of S. cerevisiae under acetic acid stress condition. However, the molecular mechanisms is still unclear. To explore the underlying mechanism of zinc sulfate protection against acetic acid stress, transcriptomic and proteomic analysis were performed. The changed genes and proteins are related to carbon metabolism, amino acid biosynthesis, energy metabolism, vitamin biosynthesis and stress responses. In a total, 28 genes showed same expression in transcriptomic and proteomic data, indicating that zinc sulfate affects gene expression at posttranscriptional and posttranslational levels.tration acetic acid in the fermentation medium represses cell growth, metabolism and fermentation efficiency of Saccharomyces cerevisiae, which is widely used for cellulosic ethanol production. Our previous study proved that supplementation of zinc sulfate in the fermentation medium improved cell growth and ethanol fermentation performance of S. cerevisiae under acetic acid stress condition. However, the molecular mechanisms is still unclear. To explore the underlying mechanism of zinc sulfate protection against acetic acid stress, transcriptomic and proteomic analysis were performed. The changed genes and proteins are related to carbon metabolism, amino acid biosynthesis, energy metabolism, vitamin biosynthesis and stress responses. In a total, 28 genes showed same expression in transcriptomic and proteomic data, indicating that zinc sulfate affects gene expression at posttranscriptional and posttranslational levels.
Project description:In our previous work, we showed the positive effect of the magnesium and the negative effect of the copper on yeast fermentation performance. The magnesium increases the ethanol yield and a faster glucose consumption by the yeast, on the other hand, the copper provides an opposite effect in yeast under fermentation condition. Therefore, from this contrasting effect we performed the gene-wide expression analysis in the industrial yeast Saccharomyces cerevisiae JP1 under fermentation condition in order to reveal the gene expression profile upon magnesium and copper supplementation.
Project description:Saccharomyces cerevisiae is an excellent microorganism for industrial succinic acid production, but high succinic acid concentration will inhibit the growth of Saccharomyces cerevisiae then reduce the production of succinic acid. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different genetic backgrounds under different succinic acid stress, we hope to find the response mechanism of Saccharomyces cerevisiae to succinic acid.
Project description:The xylose fermentation capability of an industrainl Saccharomyces cerevisiae strain was enhanced by adaptive evolution. Eight homozygots were generated by tetrads dissection. The underlying molecular basis of the enhanced xylose fermentation capability was analyzed.
Project description:This SuperSeries is composed of the following subset Series: GSE26617: Saccharomyces cerevisiae bottom of the fermentor vs. feeding GSE26618: Saccharomyces cerevisiae bottom of the fermentor vs. fermentation Refer to individual Series