Project description:Changes in microRNA (miRNA) expression in the mouse L4 and L5 dorsal root ganglion following unilateral sciatic nerve transection. The timepoint of 7 days post-axotomy was chosen to capture miRNA expression profiles at a time when the injured neurons were beginning to regenerate. Two condition experiment, paired control DRG vs axotomised DRG following unilateral sciatic nerve transection. 3 biological replicates, one replicate per array. Dye swap in Replicate 2.
Project description:Changes in microRNA (miRNA) expression in the mouse L4 and L5 dorsal root ganglion following unilateral sciatic nerve transection. The timepoint of 7 days post-axotomy was chosen to capture miRNA expression profiles at a time when the injured neurons were beginning to regenerate.
Project description:Sciatic nerve crush was performed on cohorts of 2-month and 24-month old animals. Resulting gene-expression data were generated from dorsal root ganglia 5 days after injury compared to naïve animals. Results show differences in intrinsic growth responses with normal aging. Total RNA taken from L4 and L5 dorsal root ganglia 5 days after injury 2-month and 24-month old animals at either day 0 or day 5 after sciatic nerve crush injury.
Project description:The goal of this study was to compare the transcriptional effects of sciatic nerve injury and spinal cord injury on lumbar dorsal root ganglion (DRG) and FACS-sorted dorsal column (DC) sensory neurons. We performed RNA-seq of whole DRG from naïve and spinal cord-injured (SCI) mice (1dpi) and compared this with previously published data for sciatic nerve transection. In order to assess changes specifically in DC neurons, we performed RNA-seq from FACS-sorted DC neurons from Thy1-YFP16 transgenic mice in naïve, sciatic nerve injured (SNI), and SCI (1 and 3dpi). We found that DC neurons alter their transcriptome after SCI, but that gene changes after SCI mostly differ from SNI. These transcriptional differences may reflect both growth promoting and growth inhibitory effects on axon regeneration after SCI.
Project description:We used microarrays to distinguish the gene expression differences among different time points after injury. We generated L4-6 dorsal root ganglia (DRG) tissues and proximal sciatic nerve (SN) tissues (0.5cm) at 0d, 1d, 4d, 7d and 14d after sciatic nerve resection.
Project description:We generated whole-genome gene expression profiles of dorsal root ganglion (DRG) neurons following nerve damage. DRG neurons extend one peripheral axon into the spinal nerve and one central axon into the dorsal root. The peripheral axon regenerates vigorously, while in contrast the central axon has little regenerative capacity. For this study, two groups of animals were subjected either to sciatic nerve (SN) or dorsal root (DR) crush, and at 12, 24, 72 hours and 7 days after the crush, lumbar DRGs L4, L5 and L6 were dissected and total RNA was extracted.
Project description:Axon regeneration in the central nervous system (CNS) requires reactivating injured neurons’ intrinsic growth state and enabling growth in an inhibitory environment. Using an inbred mouse neuronal phenotypic screen, we find that CAST/Ei mouse adult dorsal root ganglion neurons extend axons more on CNS myelin than the other eight strains tested, especially when pre-injured. Injury-primed CAST/Ei neurons also regenerate markedly in the spinal cord and optic nerve more than those from C57BL/6 mice and show greater spouting following ischemic stroke. Heritability estimates indicate that extended growth in CAST/Ei neurons on myelin is genetically determined, and two whole-genome expression screens yield the Activin transcript Inhba as most correlated with this ability. These screens are presented here. Biological quadruplicate - Mouse tissue - Naïve Dorsal Root Ganglia (DRG) and 5 day post sciatic nerve crush DRG - x9 strains.
Project description:We applied Solexa sequencing technology to identify rat microRNA genes in dorsal root ganglia (DRGs) following sciatic nerve resection. Using Solexa sequencing, computational analysis and Q-PCR verification, 114 novel miRNAs in rats were discovered and identified, of which 52 novel miRNAs were first reported in rat DRGs and 62 novel miRNAs were produced at days 1, 4, 7 and 14 after sciatic nerve resection. These data provide an important resource relating to the role and regulation of miRNAs for future studies relating to peripheral nerve injury and regeneration. 18-30 nt small RNAs from 30 Thirty Sprague-Dawley (SD) rats were sequenced at one Solexa lane
Project description:We generated whole-genome gene expression profiles of dorsal root ganglion (DRG) neurons following nerve damage. DRG neurons extend one peripheral axon into the spinal nerve and one central axon into the dorsal root. The peripheral axon regenerates vigorously, while in contrast the central axon has little regenerative capacity. For this study, two groups of animals were subjected either to sciatic nerve (SN) or dorsal root (DR) crush, and at 12, 24, 72 hours and 7 days after the crush, lumbar DRGs L4, L5 and L6 were dissected and total RNA was extracted. For each time point after lesion, three biological replicate RNA samples were hybridized together with the common reference sample consisting of labeld RNA pooled from three unlesioned animals.