Project description:Microarray analysis was performed to determine the transcriptional profiles of NKT, CD1d-aGC+ Va24-, and CD4 T cells. Clones of NKT, CD1d-aGC+ Va24-, and CD4 T cells were generated using peripheral blood drawn from two healthy individuals. RNA was extracted from cells that had been either rested (18 days post-stimulation) or stimulated (3 days post-stimulation).
Project description:T cells play a critical role in liver immunity and take part both in the initiation and in the resolution of intrahepatic inflammation. The liver contains conventional CD4 T cells, and Natural Killer T (NKT) cells that express an invariant Vα14 T cell receptor that recognizes glycolipid/CD1d antigen complexes (iNKTs) and play a role in immune surveillance and immune homeostasis. ImmPRes includes a TMT based dataset characterising the proteomes of ex-vivo liver derived CD4+ T cells along with invariant NKT (iNKT) cells
Project description:CD1d-dependent type I NKT cells, which are activated by lipid antigen, are known to play important roles in innate and adaptive immunity, as are a portion of type II NKT cells. However, the heterogeneity of NKT cells, especially NKT-like cells, remains largely unknown. Here, we report the profiling of NKT (NK1.1+CD3e+) cells in livers from wild type (WT), Jα18-deficient and CD1d- deficient mice by single-cell RNA sequencing. Unbiased transcriptional clustering revealed distinct cell subsets. The transcriptomic profiles identified the well-known CD1d-dependent NKT cells and defined two CD1d-independent NKT cell subsets. In addition, validation of marker genes revealed the differential organ distribution and landscape of NKT cell subsets during liver tumor progression. More importantly, we found that CD1d-independent Sca-1−CD62L+ NKT cells showed a strong ability to secrete IFN-γ after costimulation with IL-2, IL-12 and IL-18 in vitro. Collectively, our findings provide a comprehensive characterization of NKT cell heterogeneity and unveil a previously undefined functional NKT cell subset.
Project description:We report the identification of immature thymic CD4(-),CD8(-) double-negative (DN)1e cells with the NKT cell lineage potential. We also analyzed the gene expression profiles of DN1e thymocytes compared with those of mature thymic NKT cell developmental stages termed NKT stage-1, 2, and -3, which are characterized by differential expression levels of NK1.1 and CD44 antigens in C57BL/6 mouse strain. Next generation sequencing of total transcriptomes using total RNA isolated from FACS sorted ex vivo thymic DN1eP (Lin-/CD44+/CD25-/CD24low/CD5+/CD27+/Ly108-/CXCR3+) fraction, and mature thymic alphaGalCer-loaded CD1d dimer+TCRbeta+ NKT cell developmental stage-1 (CD44-/NK1.1-), stage-2 (CD44+/NK1.1-), and stage-3 (CD44+/NK1.1+) cells.
Project description:Some infectious agents are associated with non-Hodgkin lymphoma development. Here we have used p53-deficient mice chronically injected with Streptococcus pneumoniae (Spn) with the aim to develop an animal model of infection-associated lymphomagenesis. We show that repeated stimulations with heat-killed Spn significantly enhanced the incidence of peripheral T-cell lymphoma (PTCL) in these mice. Phenotypic studies and gene expression profile analyses indicate that these PTCL arose from chronically stimulated natural killer T (NKT) cells, a T cell lineage that exhibits unique properties. Furthermore, lymphoma development was blocked when these PTCL were transferred to recipients lacking CD1d expression or treated with blocking CD1d mAbs, thus demonstrating that in vivo TCR/CD1d interactions are required for these PTCL survival. In conclusion, we have identified a new entity of peripheral T-cell lymphoma that originates from CD1d-restricted natural killer T (NKT) cells. Our results could refine the classification of PTCL and pave the way for the development of new immunotherapeutic approaches.
Project description:Solar UV represents a ubiquitous environmental physical insult. Thus, to maintain its integrity as an effective barrier, skin must be unusually resistant to cell death. However, UV overexposure causes sunburn1,2 (necrosis and inflammation) and cells that survive harbour damaged DNA, which if not repaired or removed by apoptosis can lead to skin cancer development3-10. CD1d, a transmembrane protein identified in glycolipid antigen presentation11,12 to invariant natural killer T (NKT) cells13,14 is expressed by epithelial cells of most tissues including skin15-17, and shares close homology between humans and mice12. Since CD1d and NKT cells are implicated in regulating UV skin carcinogenesis4,18, we studied susceptibility to UV-induced sunburn in mice either lacking expression of both CD1d and NKT cells or expressing CD1d without NKT cells. Here we show that CD1d, but not NKT cells is necessary for UV to cause sunburn. CD1d causes cells to resist apoptosis in response to UV overexposure as the means to promote cell survival and directs the expression of inflammatory response genes, resulting in tissue destruction and skin inflammation. This previously unknown action of CD1d links the etiology of sunburn to skin cancer. Keywords = CD1d knockout, UV, sunburn, cancer Keywords: other
Project description:We examined miRNA profiles of human NK cells from different cell compartments (peripheral blood, cord blood, and uterine deciduas) and of NKT and T cells from peripheral blood, and identified distinct classes of up-regulated microRNAs in different human NK cells.