Project description:Analysis of ex vivo isolated lymphatic endothelial cells from the dermis of patients to define type 2 diabetes-induced changes. Results preveal aberrant dermal lymphangiogenesis and provide insight into its role in the pathogenesis of persistent skin inflammation in type 2 diabetes. The ex vivo dLEC transcriptome reveals a dramatic influence of the T2D environment on multiple molecular and cellular processes, mirroring the phenotypic changes seen in T2D affected skin. The positively and negatively correlated dLEC transcripts directly cohere to prolonged inflammatory periods and reduced infectious resistance of patients´ skin. Further, lymphatic vessels might be involved in tissue remodeling processes during T2D induced skin alterations associated with impaired wound healing and altered dermal architecture. Hence, dermal lymphatic vessels might be directly associated with T2D disease promotion. Global gene expression profile of normal dermal lymphatic endothelial cells (ndLECs) compared to dermal lymphatic endothelial cells derived from type 2 diabetic patients (dLECs).Quadruplicate biological samples were analyzed from human lymphatic endothelial cells (4 x diabetic; 4 x non-diabetic). subsets: 1 disease state set (dLECs), 1 control set (ndLECs)
Project description:Analysis of ex vivo isolated lymphatic endothelial cells from the dermis of patients to define type 2 diabetes-induced changes. Results preveal aberrant dermal lymphangiogenesis and provide insight into its role in the pathogenesis of persistent skin inflammation in type 2 diabetes. The ex vivo dLEC transcriptome reveals a dramatic influence of the T2D environment on multiple molecular and cellular processes, mirroring the phenotypic changes seen in T2D affected skin. The positively and negatively correlated dLEC transcripts directly cohere to prolonged inflammatory periods and reduced infectious resistance of patients´ skin. Further, lymphatic vessels might be involved in tissue remodeling processes during T2D induced skin alterations associated with impaired wound healing and altered dermal architecture. Hence, dermal lymphatic vessels might be directly associated with T2D disease promotion.
Project description:Hsa_circ_0084443 expression level is down-regulated during normal skin wound healing and higher level of hsa_circ_0084443 was found in chronic non-healing diabetic foot ulcers compared to normal wounds. However, the biological function of hsa_circ_0084443 in epidermal keratinocytes during wound repair has not been studied. To study the genes regulated by hsa_circ_0084443, we transfected siRNA targeting hsa_circ_0084443 diagnostic junction into human primary epidermal keratinocytes to knockdown hsa_circ_0084443 expression. We performed a global transcriptome analysis of keratinocytes upon knockdown of hsa_circ_0084443 using Affymetrix arrays.
Project description:MiR-132 is one of the most upregulated miRNAs in human skin wounds at the inflammatory phase of healing. MiR-132 inhibits inflammation but promotes growth of epidermal keratinocytes, indicating that it may facilitate the inflammatory-proliferative phase transition during wound repair. Following this line of research, here we evaluated the therapeutic potential of miR-132 in chronic wound using mouse in vivo wound model. We performed a global transcriptome analysis of skin wounds of leptin receptor-deficient (db/db) mice treated with miR-132 or control mimics. Db/db mouse has been used as a type 2 diabetic model with impaired wound healing capacity.
Project description:Impaired skin wound healing is a significant global health issue, especially among the elderly. Wound healing is a well-orchestrated process involving the sequential phases of inflammation, proliferation, and tissue remodeling. Although wound healing is a highly dynamic and energy-requiring process, the role of metabolism remains largely unexplored. By combining transcriptomics and metabolomics of human skin biopsy samples, we mapped the core bioenergetic and metabolic changes in normal acute as well as chronic wounds in elderly subjects. We found upregulation of glycolysis, the tricarboxylic acid cycle, glutaminolysis, and β-oxidation in the later stages of acute wound healing and in chronic wounds. To ascertain the role of these metabolic pathways on wound healing, we targeted each pathway in a wound healing assay as well as in a human skin explant model using metabolic inhibitors and stimulants. Enhancement or inhibition of glycolysis and, to a lesser extent, glutaminolysis had a far greater impact on wound healing than similar manipulations of oxidative phosphorylation and fatty acid β-oxidation. These findings increase the understanding of wound metabolism and identify glycolysis and glutaminolysis as potential targets for therapeutic intervention.
Project description:The lncRNA LOC100130476 (named as WAKMAR2) was found to be down-regulated in epidermal keratinocytes in human chronic non-healing wounds compared to normal acute wounds and the intact skin. However, its biological role in keratinocytes during wound repair has not been studied. To study the genes regulated by WAKMAR2, we transfected Antisense LNA GapmeR against WAKMAR2 into human primary epidermal keratinocytes to deplete it. We performed a transcriptome-wide gene expression level profiling of keratinocytes upon depletion of WAKMAR2 using Affymetrix arrays.
Project description:Proteinases play a pivotal role in wound healing by degrading molecular barriers, regulating cell-matrix interactions and availability of bioactive molecules. Matrix metalloproteinase-13 (MMP-13, collagenase-3) is a wide spectrum proteinase. Its expression and function is linked to the growth and invasion of many epithelial cancers such as squamous cell carcinoma. Moreover, the physiologic expression of MMP-13 is associated e.g. to scarless healing of human fetal skin and adult gingival wounds. While MMP-13 is not found in the normally healing skin wounds in human adults, it is expressed in mouse skin during wound healing. Thus, mouse wound healing models can be utilized for studying the role of MMP-13 in the events of wound healing. As the processes such as the migration and proliferation of keratinocytes, angiogenesis, inflammation and activation of fibroblasts are components of wound repair as well as of cancer, many results received from wound healing studies are also adaptable to cancer research. Classically, the process of wound healing can be devided into three phases which are histologically and functionally separate but temporally overlapping: 1) hemostasis and inflammation, 2) re-epithelialization and granulation tissue formation, and 3) matrix remodeling. Granulation tissue is formed into the wound via fibroplasia, angiogenesis and extracellular matrix (ECM) deposition by fibroblasts. Granulation tissue is rich in inflammatory cells, fibroblasts, myofibroblasts and blood vessels. After epidermal recovery, the granulation tissue is resolved via matrix remodeling and cell apoptosis. A sterile viscose cellulose sponge (VCS) characterized by defined size and structure can be used to experimentally induce formation of subcutaneous granulation tissue. Compared to normal granulation tissue, this model allows easy examination of the granulation tissue in its entirety but leaving out epidermal keratinocytes in the sample preparation. In this study, we studied the role of MMP-13 in the formation of mouse VCS-induced granulation tissue. We performed gene expression profiling of the granulation tissue samples of Mmp13-/- (KO) and wild type (WT) mice harvested at day 7, day 14 and day 21 after VCS implantation. Mmp13-/- (KO) mice were generated as described (Inada et al. 2004, PNAS, 101: 17192-17197) and used in these experiments after backcrossing at least seven generations into C57BL6 mice. The WT mice were generated from the backcrossed heterozygote Mmp13-/- (KO) mice. Granulation tissues were harvested at three time points (7d, 14d, 21d) from Mmp13-/- (KO) and WT mice. One sample of each mouse was analyzed (n=3, 7d; n=4, 14d; n=4, 21d; for each genotype). The samples were processed for RNA extraction and Affymetrix 3'IVT DNA microarray gene expression analysis.
Project description:Bone morphogenetic protein (BMP) signalling plays a key role in the control of skin development and postnatal remodelling by regulating keratinocyte proliferation, differentiation and apoptosis. To study the role of BMPs in wound-induced epidermal repair, we used transgenic mice overexpressing the BMP downstream component Smad1 under the control of a K14 promoter as an in vivo model, as well as ex vivo and in vitro assays. K14-caSmad1 mice exhibited retarded wound healing associated with significant inhibition of proliferation and increased apoptosis in healing wound epithelium. Furthermore, microarray and qRT-PCR analyses revealed decreased expression of a number of cytoskeletal/cell motility-associated genes including wound-associated keratins (Krt16, Krt17) and Myo5a, in the epidermis of K14- caSmad1 mice versus wild-type controls during wound healing. BMP treatment significantly inhibited keratinocyte migration ex vivo, and primary keratinocytes of K14-caSmad1 mice showed retarded migration compared to wild-type controls. Finally, siRNA-mediated silencing of Bmpr-1B in primary mouse keratinocytes accelerated cell migration and was associated with increased expression of Krt16, Krt17 and Myo5a compared to controls. Thus, this study demonstrates that BMPs inhibit keratinocyte proliferation, cytoskeletal organization and migration in regenerating skin epithelium during wound healing, and raises a possibility for using BMP antagonists for the management of chronic wounds. Two-condition experiment, Wild type vs. Smad1 overexpressing mice. Biological replicates: 2 replicates.
Project description:Sulfur mustard (SM) is a hazardous chemical warfare agent. Exposure to SM results in various pathologies including skin lesions and impaired wound healing. To date, there are no effective treatments available. Here we discover that the miRNA miR-497-5p is induced in epidermal cells by SM and mediates keratinocyte dysfunction. Transcriptome analysis using RNA-seq in normal human epidermal keratinocytes (NHEK) revealed that SM evoked differential expression of 1,896 mRNAs and 25 miRNAs with many of these RNAs known to be involved in keratinocyte function and wound healing. We demonstrated that keratinocyte differentiation and proliferation were efficiently regulated by miRNAs induced in skin cells after exposure to SM. The inhibition of miR-497-5p counteracted SM-induced premature differentiation and inhibition of proliferation in NHEK. In addition, we showed that microneedle-mediated transdermal application of lipid-nanoparticles containing miR-497-5p inhibitor improved the healing of human skin biopsies upon exposure to SM. Our findings expand the current understanding of SM-associated molecular toxicology in keratinocytes and highlight miR-497-5p as feasible clinical target for specific skin therapy in SM-exposed patients and beyond.