Project description:The role of Polycomb group (PcG) was studied on RNA Polymerase II (Pol II) pausing phenomenon. Wild type and Polycomb mutant (esc) embryos were used for ChIP-Seq experiments using Pol II and histone methylation antibodies. Enhanced Pol II occupancy was observed for thousands of genes in esc mutant embryos, including genes not known to be bound by PRC2 or having H3K27me3 associated. Most of these genes exhibit a concomitant reduction in H3K27me3 and increase in H3K4me3 at promoter-proximal regions. Silent genes lacking promoter-associated paused Pol II in wild-type embryos are converted into âpoisedâ genes with paused Pol II in esc mutants. We suggest that this conversion of silent genes into poised genes might render differentiated cell types susceptible to switches in identity in PcG mutants. ChIP-Seq data was generated for antibodies against Pol-II, H3K4me3, H3K27me3 in both wild type and esc mutant Drosophila embryos (0-2hr, 8-12hr, and 18-24hr embryos). In addition GRO-Seq data was generated for 18-24hr esc mutant embryos.
Project description:The role of Polycomb group (PcG) was studied on RNA Polymerase II (Pol II) pausing phenomenon. Wild type and Polycomb mutant (esc) embryos were used for ChIP-Seq experiments using Pol II and histone methylation antibodies. Enhanced Pol II occupancy was observed for thousands of genes in esc mutant embryos, including genes not known to be bound by PRC2 or having H3K27me3 associated. Most of these genes exhibit a concomitant reduction in H3K27me3 and increase in H3K4me3 at promoter-proximal regions. Silent genes lacking promoter-associated paused Pol II in wild-type embryos are converted into âpoisedâ genes with paused Pol II in esc mutants. We suggest that this conversion of silent genes into poised genes might render differentiated cell types susceptible to switches in identity in PcG mutants.
Project description:Transitions between pluripotent stem cells and differentiated cells are executed by key transcription regulators. Comparative measurements of RNA polymerase distribution over the genome’s primary transcription units in different cell states can identify the genes and steps in the transcription cycle that are regulated during such transitions. To identify the complete transcriptional profiles of RNA polymerases with high sensitivity and resolution, as well as the critical regulated steps upon which regulatory factors act, we used genome-wide, nuclear run-on (GRO-seq) to map the density and orientation of transcriptionally-engaged RNA polymerases in mouse embryonic stem cells (ESCs) and embryonic fibroblasts (MEFs). In both cell types, progression of a promoter-proximal, paused RNA polymerase II (Pol II) into productive elongation is a rate-limiting step in transcription of ~40% of mRNA-encoding genes. Importantly, quantitative comparisons between cell types reveal that transcription is controlled frequently at paused Pol II’s entry into elongation. Furthermore, “bivalent” ESC genes (exhibiting both active and repressive histone modifications) bound by Polycomb Group Complexes PRC 1 and PRC2 show dramatically reduced levels of paused Pol II at promoters relative to an average gene. In contrast, bivalent promoters bound by only PRC2 allow Pol II pausing, but it is confined to extremely 5’ proximal regions. Altogether, these findings identify rate-limiting targets for transcription regulation during cell differentiation.
Project description:Eukaryotic genome is compartmentalized into structural and functional domains. One of the concepts of higher order organization of chromatin posits that the DNA is organized in constrained loops that behave as independent functional domains. A predominantly ribo-proteinaceous nucleoskeleton, termed as Nuclear Matrix (NuMat) is proposed to provide the structural platform for attachment of these loops. The DNA sequence located at the base of the loops are known as the Matrix Attachment Regions (MARs). NuMat relates to all nuclear processes and has been shown to be cell type specific in composition. It is a biochemically defined structure and several protocols have been used to isolate the NuMat where some of the steps have been critically evaluated. In the present study we have looked into the dynamics of MARs when the isolation process is varied and also during embryonic development of D. melanogaster. Our results show that a subset of MARs termed here as “Core-MARs” are fixed and unalterable anchor points in the Drosophila genome as they remain associated with NuMat at all developmental stages and do not depend on the isolation procedure used. Core-MARs are abundant in the pericentromeric heterochromatin. On the other hand, MARs in the euchromatin are dynamic and reflect the transcriptomic profile of the developmental stage of the host cell. New MARs are generated by nuclear stabilization (a critical step in the isolation procedure), and during development, mostly at the paused RNA polymerase II (Pol II) promoters. Paused Pol II MARs depend on RNA transcription for NuMat association. RNase A treatment leads to collapse of the NuMat and loss of paused Pol II promoter MARs. Our data reveals the role of MARs in functional compartmentalization of D. melanogaster genome and adds to the current understanding of nuclear architecture and 3D organization of a functionally dynamic nucleus.
Project description:Transitions between pluripotent stem cells and differentiated cells are executed by key transcription regulators. Comparative measurements of RNA polymerase distribution over the genomeM-bM-^@M-^Ys primary transcription units in different cell states can identify the genes and steps in the transcription cycle that are regulated during such transitions. To identify the complete transcriptional profiles of RNA polymerases with high sensitivity and resolution, as well as the critical regulated steps upon which regulatory factors act, we used genome-wide, nuclear run-on (GRO-seq) to map the density and orientation of transcriptionally-engaged RNA polymerases in mouse embryonic stem cells (ESCs) and embryonic fibroblasts (MEFs). In both cell types, progression of a promoter-proximal, paused RNA polymerase II (Pol II) into productive elongation is a rate-limiting step in transcription of ~40% of mRNA-encoding genes. Importantly, quantitative comparisons between cell types reveal that transcription is controlled frequently at paused Pol IIM-bM-^@M-^Ys entry into elongation. Furthermore, M-bM-^@M-^\bivalentM-bM-^@M-^] ESC genes (exhibiting both active and repressive histone modifications) bound by Polycomb Group Complexes PRC 1 and PRC2 show dramatically reduced levels of paused Pol II at promoters relative to an average gene. In contrast, bivalent promoters bound by only PRC2 allow Pol II pausing, but it is confined to extremely 5M-bM-^@M-^Y proximal regions. Altogether, these findings identify rate-limiting targets for transcription regulation during cell differentiation. Mapping engaged RNA polymerase density in two cell types by sequencing run-on transcripts. SUPPLEMENTARY FILES: All fastq files have sanger-fastq format q values. Alignments were generated with eland and the mm9 mouse genome assembly. Reads aligning to regions annotated as similar to rRNA by RepeatMasker were then removed. Wiggle files are in units of RPKM (reads per kilobase per million aligned reads) and are broken up by cell type and chromosome to aid in uploading to UCSC. Each file furthermore contains two tracks - one for each strand. As in the published paper, plus strand RPKM densities are in red with positive values and minus strand RPKM densities are in blue with negative values.
Project description:The control of promoter-proximal pausing and the release of RNA polymerase II (RNA Pol II) is a widely used mechanism for regulating gene expression in metazoans, especially for genes that respond to environmental and developmental cues. Here, we identify Pol II associated Factor 1 (PAF1) as a major regulator of promoter-proximal pausing. Knockdown of PAF1 leads to increased release of paused Pol II into gene bodies at thousands of genes. Genes with the highest levels of paused Pol II exhibit the largest redistribution of Pol II from the promoter-proximal region into the gene body in the absence of PAF1. PAF1 depletion results in increased nascent transcription and increased levels of phosphorylation of Pol II’s c-terminal domain on serine 2 (Ser2P). These changes can be explained by the recruitment of the Ser2P kinase Super Elongation Complex (SEC) effecting increased release of paused Pol II into productive elongation, thus establishing a novel function for PAF1 as a major regulator of pausing in metazoans. ChIP-seq of Pol II of different forms, SEC subunits, PAFc subunits and H2Bub in human cell lines targeted by PAF1 or scramble shRNA. ChIP-seq of total Pol II in HCT116 cells targeted by BRE1A or scramble shRNA. ChIP-seq of total Pol II in S2 cells targeted by Paf1 or LacZ RNAi. Total RNA-seq, nascent RNA-seq and GRO-seq in HCT116 cells targeted by PAF1 or scramble shRNA.
Project description:The control of promoter-proximal pausing and the release of RNA polymerase II (RNA Pol II) is a widely used mechanism for regulating gene expression in metazoans, especially for genes that respond to environmental and developmental cues. Here, we identify Pol II associated Factor 1 (PAF1) as a major regulator of promoter-proximal pausing. Knockdown of PAF1 leads to increased release of paused Pol II into gene bodies at thousands of genes. Genes with the highest levels of paused Pol II exhibit the largest redistribution of Pol II from the promoter-proximal region into the gene body in the absence of PAF1. PAF1 depletion results in increased nascent transcription and increased levels of phosphorylation of Pol II’s c-terminal domain on serine 2 (Ser2P). These changes can be explained by the recruitment of the Ser2P kinase Super Elongation Complex (SEC) effecting increased release of paused Pol II into productive elongation, thus establishing a novel function for PAF1 as a major regulator of pausing in metazoans.
Project description:Transcription by RNA Polymerase II (Pol II) in metazoan is regulated in several steps, including preinitiation complex (PIC) formation, initiation, Pol II escape, productive elongation, cotranscriptional RNA-processing and termination. Genome-wide studies have demonstrated that the phenomenon of promoter-bound Pol II pausing is widespread, especially for genes involved in developmental and stimulus-responsive pathways. However, a mechanistic understanding of the paused Pol II states at promoters is limited. For example, at a global level, it’s unclear to what extent the engaged paused Pol II is stably tethered to the promoter or undergoes rapid cycles of initiation and termination. Here we used the small molecule Triptolide (TPL), an XPB/TFIIH inhibitor, to block transcriptional initiation followed by measuring Pol II occupancy by ChIP-seq. This inhibition of initiation enables us to investigate different states of paused Pol II. Specifically, our global analysis reveals that most genes with paused Pol II, as defined by pausing index, show significant clearance of Pol II during the period of TPL treatment. Our study further identifies a group of genes with unexpectedly stably-paused Pol II, with unchanged Pol II occupancy even after one hour of inhibition of initiation. This group of genes constitutes a small portion of all paused genes defined by the conventional criterion of pausing index. These findings could pave the way for evaluating the contribution of different elongation/pausing factors on different states of Pol II pausing in developmental and other stimulus-responsive pathways. ChIP-Seq of total/Ser5P Pol II in HCT116 cells treated with DMSO or TPL in serum starvation/activation or normal conditions. Nascent RNA-seq in HCT116 cells treated with DMSO or TPL in starved condition.
Project description:While enhancers are often regulated at the level of accessibility by pioneer factors, promoters tend to be constitutively accessible and poised for activation by paused Pol II — thus are often not considered as sites of developmental regulation. Here we show that the accessibility of promoters and the acquisition of paused Pol II can also be subject to developmental regulation by pioneer factors. We show that Lola-I, a Drosophila zinc finger transcription factor, is ubiquitously expressed at the end of embryogenesis and causes its target promoters to become accessible and acquire paused Pol II throughout the embryo. This promoter transition is required but not sufficient for tissue-specific target gene expression. Lola-I mediates this function by binding to the edges of the promoter nucleosomes, which leads to their depletion, similar to the action of pioneer factors at enhancers. These results uncover a level of regulation for promoters that is normally found at enhancers, providing further evidence that promoters and enhancers display unexpectedly similar characteristics.
Project description:While enhancers are often regulated at the level of accessibility by pioneer factors, promoters tend to be constitutively accessible and poised for activation by paused Pol II — thus are often not considered as sites of developmental regulation. Here we show that the accessibility of promoters and the acquisition of paused Pol II can also be subject to developmental regulation by pioneer factors. We show that Lola-I, a Drosophila zinc finger transcription factor, is ubiquitously expressed at the end of embryogenesis and causes its target promoters to become accessible and acquire paused Pol II throughout the embryo. This promoter transition is required but not sufficient for tissue-specific target gene expression. Lola-I mediates this function by binding to the edges of the promoter nucleosomes, which leads to their depletion, similar to the action of pioneer factors at enhancers. These results uncover a level of regulation for promoters that is normally found at enhancers, providing further evidence that promoters and enhancers display unexpectedly similar characteristics.