Project description:Watermelon (Citrullus lanatus) is one of the most important vegetable crops in the world and accounts for 20% of the world’s total area devoted to vegetable production. Fusarium wilt of watermelon is one of the most destructive diseases in watermelon worldwide. Transcriptome profiling of watermelon during its incompatible interactions with Fusarium oxysporum f.sp. niveum (FON) was generated using an Agilent custom microarray which contains 15,000 probes representing approximately 8,200 watermelon genes. A total of 24, 275, 596, 598, and 592 genes that are differentially expressed genes between FON- and mock-inoculated watermelon roots at 0.5, 1, 3, 5 and 8 days post inoculation (dpi), respectively, were identified. Bioinformatics analysis of these differentially expressed genes revealed that during the incompatible interaction between watermelon and FON, the expression of a number of pathogenesis-related (PR) genes, transcription factors, signaling/regulatory genes, and cell wall modification genes, was significantly induced. A number of genes for transporter proteins such as aquaporins were down-regulated, indicating that transporter proteins might contribute to the development of wilt symptoms after FON infection. In the incompatible interaction, most genes involved in biosynthesis of jasmonic acid (JA) showed expressed stronger and more sustained than those in compatible interaction in FON-infected tissues. Similarly, genes associated with shikimate-phenylpropanoid-lignin biosynthesis were also induced in incompatible interaction, but expression of these genes were not changed or repressed in the compatible interaction. Fusarium oxysporum f.sp. niveum induced gene expression in watermelon root was measured at 0.5,1d, 3d, 5d and 8d after inoculation. Sample inoculated with water were used as the mock controls. Three independent experiments were performed.
Project description:Watermelon (Citrullus lanatus) is one of the most important vegetable crops in the world and accounts for 20% of the world’s total area devoted to vegetable production. Fusarium wilt of watermelon is one of the most destructive diseases in watermelon worldwide. Transcriptome profiling of watermelon during its incompatible interactions with Fusarium oxysporum f.sp. niveum (FON) was generated using an Agilent custom microarray which contains 15,000 probes representing approximately 8,200 watermelon genes. A total of 24, 275, 596, 598, and 592 genes that are differentially expressed genes between FON- and mock-inoculated watermelon roots at 0.5, 1, 3, 5 and 8 days post inoculation (dpi), respectively, were identified. Bioinformatics analysis of these differentially expressed genes revealed that during the incompatible interaction between watermelon and FON, the expression of a number of pathogenesis-related (PR) genes, transcription factors, signaling/regulatory genes, and cell wall modification genes, was significantly induced. A number of genes for transporter proteins such as aquaporins were down-regulated, indicating that transporter proteins might contribute to the development of wilt symptoms after FON infection. In the incompatible interaction, most genes involved in biosynthesis of jasmonic acid (JA) showed expressed stronger and more sustained than those in compatible interaction in FON-infected tissues. Similarly, genes associated with shikimate-phenylpropanoid-lignin biosynthesis were also induced in incompatible interaction, but expression of these genes were not changed or repressed in the compatible interaction.
Project description:Background: Fusarium oxysporum f.sp. radicis-lycopersici (FORL) is one of the most destructive necrotrophic pathogen of tomato, causing important field and greenhouse yield losses. Despite the relevant economic impact, little is known about the molecular mechanisms regulating the Fusarium oxysporum f.sp. radicis-lycopersici resistance in tomato. Results: A transcriptomic experiment was carried out in order to investigate major mechanisms of FORL response in resistant and susceptible isogenic tomato lines. The microarray analysis at 15 DPI reveals a distinct gene expression pattern between the two genotypes in the inoculated vs not inoculated conditions, furthermore confirmed by a q-PCR experiment. A model of plant response for both compatible and incompatible reaction was proposed. In particular, in the incompatible interaction an activation of defense genes related to secondary metabolites production and tryptophan metabolism was observed. Moreover, the cell osmotic potential maintenance after the FORL roots challenging was mediated by a dehydration induced protein. As for the compatible interaction the activation of an oxidative burst mediated by Peroxidases and a Cytochrome monooxigenase, conducedthe cells to degeneration and necrosis. Conclusions: Our work allowed a comprehensive understanding of the molecular basis of the tomato-FORL interaction. Result obtained emphasizes a different transcriptional reaction between the resistant and the susceptible genotype to FORL challenging. Our findings could lead to the improvement of strategies of this disease control.