Project description:Dynamic acetylation of metabolic proteins has emerged as a ubiquitous post-translational modification of human metabolic proteins. However, the corresponding modifying enzymes and the functions of the modification await exploration. Using a genome-wide synthetic lethality screen, we constructed a genetic interaction network of human histone deacetylases (HDACs) and discovered many metabolic substrates of these enzymes. We further confirmed that the adenosine monophosphate-activated protein kinase (AMPK) catalytic subunit is acetylated and deacetylated by EP300 and HDAC1, respectively. Deacetylation of AMPK catalytic subunit enhances physical interaction with the upstream kinase LKB1, and leads to AMPK phosphorylation and activation. These findings highlight the importance of genetic interaction profiling to identify specific substrates of individual HDACs and elucidate how cells use protein (de)acetylation to coordinate nutrient availability and cellular energy status.
Project description:To determine the roles of histone acetyltransferase Gcn5 and histone deacetylase Hda1 in regulating metabolic reprogramming during glucose starvation in Saccharomyces cerevisiae cells. The transcriptome of wild-type, gcn5Δ, hda1Δ, and gcn5Δhda1Δ cells grown at both glucose-replete (exponential phase) and glucose-starved (early PDS (post-diauxic shift) phase) conditions were determined.
Project description:Dynamic acetylation of metabolic proteins has emerged as a ubiquitous post-translational modification of human metabolic proteins. However, the corresponding modifying enzymes and the functions of the modification await exploration. Using a genome-wide synthetic lethality screen, we constructed a genetic interaction network of human histone deacetylases (HDACs) and discovered many metabolic substrates of these enzymes. We further confirmed that the adenosine monophosphate-activated protein kinase (AMPK) catalytic subunit is acetylated and deacetylated by EP300 and HDAC1, respectively. Deacetylation of AMPK catalytic subunit enhances physical interaction with the upstream kinase LKB1, and leads to AMPK phosphorylation and activation. These findings highlight the importance of genetic interaction profiling to identify specific substrates of individual HDACs and elucidate how cells use protein (de)acetylation to coordinate nutrient availability and cellular energy status. To study the functional specificity of individual HDAC, we developed a genome-wide genetic interaction profiling technology in cultured human cells by RNAi using pooled TRC (The RNAi Consortium) 75k human shRNA library and complexity deconvolution by high-density microarray with a half-hairpin barcode design. The HCT116 colon cancer cell line was chosen as the screen platform because of its quasinormal diploid karyotype. The performance of the customized microarray we designed was first evaluated by the receiver operating characteristic (ROC) curve showing high sensitivity (89%), specificity (94%) and area under curve (0.95), as well as a control hybridization without DNA sample showing low background signal. Both results suggest that the fluorescent signals were generated by specific hybridization reactions. The high correlation of signal between Cy5 and Cy3 channel as well as dye-swap experiments indicated that biases between the two labeling fluorophores during competitive hybridization were negligible. Moreover, correlation between technical and biological replicates confirmed the high reproducibility of the methodology. In the screen, we used stable polyclonal cells expressing shRNA constructs targeting firefly luciferase (shLuciferase) as control. We checked the knockdown efficiency in protein or RNA level of individual shRNA constructs for 12 human HDAC genes (HDAC1~4, HDAC6~9, SIRT1~3 and SIRT5) by immunoblotting or quantitative PCR, and generated stable polyclonal query cell lines expressing two shRNA constructs with the highest knockdown efficiency for each HDAC gene. After transduction by TRC shRNA lentiviral pools, benchmark samples were harvested prior to puromycin selection, and the remaining cells were propagated under selection and harvested again after 18 population doublings as the end samples. Half-hairpin barcode library of the benchmark and end samples was recovered from genomic DNA respectively by PCR with Cy5 and Cy3-labeled primers, gel purified, and hybridized to the microarray. For each shRNA construct, the Z-score of the log2(Cy5/Cy3) was computed, and Z-score difference was calculated by subtracting the Z-score of the control sample from that of the query sample. Z-score differences larger than 1.5 and less than -1.5 were used as arbitrary thresholds to define candidate negative and positive genetic interactions, respectively.
Project description:The model predicts the inhibitory potential of small molecules against Histone deacetylase 3 (HDAC3), a relevant human target for cancer, inflammation, neurodegenerative diseases and diabetes. The authors have used a dataset of 1098 compounds from ChEMBL and validated the model using the benchmark MUBD-HDAC3.
Model Type: Predictive machine learning model.
Model Relevance: Probability that the molecule is a HDAC3 inhibitor
Model Encoded by: Sarima Chiorlu (Ersilia)
Metadata Submitted in BioModels by: Zainab Ashimiyu-Abdusalam
Implementation of this model code by Ersilia is available here:
https://github.com/ersilia-os/eos1n4b
2024-08-06 | MODEL2406210001 | BioModels
Project description:SAHA Induced Dynamics of a Human Histone Deacetylase Protein Interaction Network
Project description:Zebrafish (Danio rerio) model system have used widespread vertebrate investigations for genetic and cell biological analyses, and is suitable for small molecular screens such as chemical, toxicity and drug in order to use for human diseases and drug discovery . Recently, These powerful zebrafish model increasingly apply to human metabolic disease such as obesity and diabetes and toxicology. Despite a lot of advantages, proteomics research at zebrafish has received little interest in comparison with genetic and biological research using histology and in situ hybridization. Protein lysine acetylation is one of the most known post-translational modifications with dynamic and reversibly controlled by lysine acetyltransferase such as histone acetyltransferases and lysine deacetylase such as histone deacetylases and sirtuins family.Also, during the past year, global lysine acetylome studies using MS-based proteomics approach was in diverse species such as human, mouse, E. coli, Yeast and plants. Based on global acetylome data, our understanding of the roles of lysine acetylation in various cellular processes has increased. . The aim of this study was to identify Lysine acetylation in zebrafish embryos and determine the homology from Human at modified site level. Here we showed the global lysine acetylation study in Zebrafish embryos using MS-based zebrafish embryos.
Project description:This study is an open label non randomized study of hydroxychloroquine (HCQ) with histone deacetylase (HDAC) inhibitor Vorinostat in patients with advanced solid tumors to determine the maximum tolerated dose (MTD) and to evaluate the safety and antitumor activity of this drug combination.
Project description:The aim of this study is to determine the efficacy of combining the histone deacetylase (HDAC) inhibitor sodium valproate (VPA) with anti-EGFR monoclonal antibody (panitumumab or cetuximab) maintenance in the first-line treatment of patients with RAS wild type metastatic CRC.
Project description:<p>Diffuse Intrinsic Pontine Glioma (DIPG) is a universally fatal childhood cancer. Here, we performed a chemical screen in patient-derived DIPG cell cultures along with RNAseq expression analysis and integrated computational modeling to identify potentially effective therapeutic strategies. Panobinostat, among the more promising agents identified, demonstrated efficacy in pontine orthotopic xenograft models of both H3K27M and histone WT DIPG. These data suggest the potential utility of specific drug combinations and provides evidence of in vivo treatment efficacy of the multi-histone deacetylase inhibitor panobinostat. We are depositing to dbGaP deep sequencing whole exome data for 22 patient tumor samples and 13 matched normals, along with RNAseq data for 12 patient tumor samples and 6 normal pediatric brain tissue samples. In addition, we are depositing 22 RNAseq samples from DIPG cell lines before and after panobinostat treatment.</p>
Project description:A two-colour cell array screen reveals interdependent roles for histone chaperones and a chromatin boundary regulator in histone gene repression. We describe a fluorescent reporter system that exploits the functional genomic tools available in budding yeast to systematically assess consequences of genetic perturbations on gene expression. We used our Reporter-Synthetic Genetic Array (R-SGA) method to screen for regulators of core histone gene expression. We discovered that the histone chaperone Rtt106 functions in a pathway with two other chaperones, Asf1 and the HIR complex, to create a repressive chromatin structure at core histone promoters. We found that activation of histone (HTA1) gene expression involves both relief of Rtt106-mediated repression by the activity of the histone acetyltransferase Rtt109 and restriction of Rtt106 to the promoter region by the bromodomain-containing protein Yta7. We propose that the maintenance of Asf1/HIR/Rtt106-mediated repressive chromatin domains is the primary mechanism of cell cycle regulation of histone promoters. Our data suggest that this pathway may represent a chromatin regulatory mechanism that is broadly used across the genome.