Project description:H5N1 subtype highly pathogenic avian influenza virus has been spreading to Asia, Eurasia and African coutries. An original or six of recombinant H5N1 subtype influenza viruses with varying survivability were infected to chickens for elucidating genes correlated with pathogenicity. Two chickens were infected with each 10^6EID50/ head virus intranasally, and their lung was collected from infected chicken at 24 hours after infection.
Project description:H5N1 subtype highly pathogenic avian influenza virus has been spreading to Asia, Eurasia and African coutries. An original or six of recombinant H5N1 subtype influenza viruses with varying survivability were infected to chickens for elucidating genes correlated with pathogenicity.
Project description:Transcriptional profiling of chicken embryonic fibroblasts (DF-1 cells) comparing the effects of chicken cells transfected with duck RIG-I compared to empty-vector transfected cells following with low or highly pathogenic avian influenza. Goal was to determine the effects of duck RIG-I on influenza-induced immune gene expression.
Project description:Purpose: The goals of this study are to compare Next-generation sequencing (NGS)-derived transcriptome profiling (RNA-seq) in the lung of three tyeps of mice during influenza infection. Methods: Total RNA from lung was extracted using a modified TRIzol protocol and spectrophometrically quantitated. Library preparation and sequencing were conducted using 3’ inTAG next-generation sequencing . Differential gene expression for day 6 post influenza infection was determined relative to mock inoculated mice. Results: Differentially expressed genes were defined using p-value <0.01 and FDR-corrected p-value <0.1 cutoffs. We identified the transcripts in the lung of RIG-I-/-, MAVS -/- mice during influenza infection Our study represents the first detailed analysis of lung transcriptomes of Wild Type , RIG-I-/-, MAVS -/- mice during influenza infection , with biologic replicates, generated by RNA-seq technology.
Project description:To study miRNA expression profiles during highly pathogenic avian influenza virus infection, we conducted global miRNA expression profiling in human lung epithelial cells (A549) with or without H5N1 IAV infection. .
Project description:We identified a small molecule compound, KIN1148, that directly binds RIG-I to drive IRF3 and NF B activation and expression of innate immune genes, cytokines and chemokines. KIN1148 activates RIG-I in an RNA- and ATP-independent manner and does not induce a canonical antiviral interferon (IFN) gene program traditionally associated with RIG-I activation. When administered in combination with a vaccine against influenza A virus (IAV), KIN1148 induces both neutralizing antibody and broadly cross-protective IAV-specific T cell responses compared to vaccination alone, which induces poor responses. In this study, we demonstrate that KIN1148 directly engages RIG-I to activate IRF3- and NFB-dependent innate immune responses, making it the first small molecule RIG-I agonist to be identified. Biochemical studies show that KIN1148 binds to RIG-I to drive RIG-I self-oligomerization and downstream signaling activation in an RNA- and ATP-independent manner. We further find that transcriptional programs induced by KIN1148 treatment exhibit shared and unique signatures to that induced by other methods of RIG-I activation, including Sendai virus (SeV) infection and PAMP RNA transfection. KIN1148 adjuvants a split virus (SV) vaccine at suboptimal dose to protect mice from lethal challenge with a recombinant highly pathogenic avian H5N1 influenza virus, A/Vietnam/1203/2004.
Project description:RIG-I is thought to be the most important sensor of influenza virus infection and plays critical roles in the recognition of cytoplasmic dsRNA and activation of type I IFNs and initiates the innate antiviral immune responses. How the binding of viral RNA to and activation of RIG-I are regulated remains enigmatic. Here, by an affinity proteomics approach with viral RNA as the bait, we found that IFI16, previously identified as a DNA sensor, was significantly induced both in vitro and in vivo during influenza virus infection. Using an IFI16 knockout cells and p204-deficient mice model, we demonstrated that IFI16 enhanced RIG-I-mediated production of type I IFNs and thereby inhibited viral replication during influenza virus infection. Furthermore, we showed that IFI16 regulated the RIG-I signaling by enhancing its transcriptional expression through recruitment of RNA Pol II to the RIG-I promoter. We also verified that IFI16 directly interacted with both viral RNA by HINa domain and associated with RIG-I through its PYRIN domain as well as promoted influenza virus-induced K63-linked polyubiquitination of RIG-I. In addition, we found that IFI16 lost its ability to inhibit viral replication in the absence of RIG-I in virus-infected cells. These results indicate that IFI16 is a key regulator of the RIG-I signaling during antiviral innate immune responses, which highlights a novel mechanism of IFI16 in IAV and other RNA viruses infection, expands our knowledge in antiviral innate immunity, and suggests its possible use as a new strategies to manipulate antiviral responses.
Project description:RIG-I is thought to be the most important sensor of influenza virus infection and plays critical roles in the recognition of cytoplasmic dsRNA and activation of type I IFNs and initiates the innate antiviral immune responses. How the binding of viral RNA to and activation of RIG-I are regulated remains enigmatic. Here, by an affinity proteomics approach with viral RNA as the bait, we found that IFI16, previously identified as a DNA sensor, was significantly induced both in vitro and in vivo during influenza virus infection. Using an IFI16 knockout cells and p204-deficient mice model, we demonstrated that IFI16 enhanced RIG-I-mediated production of type I IFNs and thereby inhibited viral replication during influenza virus infection. Furthermore, we showed that IFI16 regulated the RIG-I signaling by enhancing its transcriptional expression through recruitment of RNA Pol II to the RIG-I promoter. We also verified that IFI16 directly interacted with both viral RNA by HINa domain and associated with RIG-I through its PYRIN domain as well as promoted influenza virus-induced K63-linked polyubiquitination of RIG-I. In addition, we found that IFI16 lost its ability to inhibit viral replication in the absence of RIG-I in virus-infected cells. These results indicate that IFI16 is a key regulator of the RIG-I signaling during antiviral innate immune responses, which highlights a novel mechanism of IFI16 in IAV and other RNA viruses infection, expands our knowledge in antiviral innate immunity, and suggests its possible use as a new strategies to manipulate antiviral responses.