Project description:Multiple Endocrine Neoplasia Tumor Syndrome type 1 (MEN 1) is an autosomal dominant tumor syndrome affecting individuals with a heterozygous germline mutaion of the MEN1 gene. MEN 1 carriers commonly develop parathyroid, anterior pituitary, duodenal and pancreatic endocrine tumors. The phenotype of existing mouse models for the MEN 1 syndrome, with a germline heterozygous (hz) Men1 gene inactivation, show close resemblance to the human MEN 1 syndrome. Menin, the protein encoded for by the MEN1/Men1 gene, lacks homology with known proteins, and evidence of its involvement in different cellular processes is steadily growing. Several interaction partners have been identified, involving different interaction sites on the menin protein. Accumulating evidence suggests a role for menin in transcriptional regulation, cell cycle control, apoptosis, chromatin modification and DNA damage response and repair. Loss of heterozygosity (LOH) of the MEN1 gene precedes tumor formation in the MEN 1 heterozygous pancreas. We set out to determine if there is a change in gene expression early on in the hz islet, as compared with islets in wildtype (wt) littermates, long before the LOH events occur. We performed a global mRNA expression microarray on islets from young, five-week-old, hz Men1 mice and their wt littermates, and we have subsequently corroborated a subset of the findings on the qPCR and protein level. Islets were isolated and RNA prepared from five five-week-old female mice heterozygous for the Men1 gene and five female wildtype littermates, and then a global gene expression microarray was performed.
Project description:Multiple Endocrine Neoplasia Tumor Syndrome type 1 (MEN 1) is an autosomal dominant tumor syndrome affecting individuals with a heterozygous germline mutaion of the MEN1 gene. MEN 1 carriers commonly develop parathyroid, anterior pituitary, duodenal and pancreatic endocrine tumors. The phenotype of existing mouse models for the MEN 1 syndrome, with a germline heterozygous (hz) Men1 gene inactivation, show close resemblance to the human MEN 1 syndrome. Menin, the protein encoded for by the MEN1/Men1 gene, lacks homology with known proteins, and evidence of its involvement in different cellular processes is steadily growing. Several interaction partners have been identified, involving different interaction sites on the menin protein. Accumulating evidence suggests a role for menin in transcriptional regulation, cell cycle control, apoptosis, chromatin modification and DNA damage response and repair. Loss of heterozygosity (LOH) of the MEN1 gene precedes tumor formation in the MEN 1 heterozygous pancreas. We set out to determine if there is a change in gene expression early on in the hz islet, as compared with islets in wildtype (wt) littermates, long before the LOH events occur. We performed a global mRNA expression microarray on islets from young, five-week-old, hz Men1 mice and their wt littermates, and we have subsequently corroborated a subset of the findings on the qPCR and protein level.
Project description:loss of Men1 in mouse pancreatic islet cells alters the epigenetic landscape of a subset of target genes. H3K4me3 ChIP-seq from either mouse pancreatic islets or mouse pancreatic islet tumors harvested at different stages.
Project description:Inactivating mutations in the MEN1 gene predisposing to the multiple endocrine neoplasia type 1 (MEN1) syndrome can also cause sporadic pancreatic endocrine tumors. MEN1 encodes menin, a subunit of MLL1/MLL2-containing histone methyltransferase complexes that trimethylate histone H3 at lysine 4 (H3K4me3). The importance of menin-dependent H3K4me3 in normal and transformed pancreatic endocrine cells is unclear. To study the role of menin-dependent H3K4me3, we performed in vitro differentiation of wild-type as well as menin-null mouse embryonic stem cells (mESCs) into pancreatic islet-like endocrine cells (PILECs). Gene expression analysis and genome-wide H3K4me3 ChIP-Seq profiling in wild-type and menin-null mESCs and PILECs revealed menin-dependent H3K4me3 at the imprinted Dlk1-Meg3 locus in mESCs, and all four Hox loci in differentiated PILECs. Specific and significant loss of H3K4me3 and gene expression was observed for genes within the imprinted Dlk1-Meg3 locus in menin-null mESCs and the Hox loci in menin-null PILECs. Given that the reduced expression of genes within the DLK1-MEG3 locus and the HOX loci is associated with MEN1-like sporadic tumors, our data suggests a possible role for menin-dependent H3K4me3 at these genes in the initiation and progression of sporadic pancreatic endocrine tumors. Furthermore, our investigation also demonstrates that menin-null mESCs can be differentiated in vitro into islet-like endocrine cells, underscoring the utility of menin-null mESC-derived specialized cell types for genome-wide high-throughput studies. Genome-wide mapping of H3K4me3 and microarray gene expression profiling in TC-1 wild-type (WT) mESCs, menin-null (Men1-ko) mESCs (3.2N), pancreatic islet-like endocrine cells (PILECs) derived from WT mESCs, and PILECs derived from Men1-ko mESCs.
Project description:Inactivating mutations in the MEN1 gene predisposing to the multiple endocrine neoplasia type 1 (MEN1) syndrome can also cause sporadic pancreatic endocrine tumors. MEN1 encodes menin, a subunit of MLL1/MLL2-containing histone methyltransferase complexes that trimethylate histone H3 at lysine 4 (H3K4me3). The importance of menin-dependent H3K4me3 in normal and transformed pancreatic endocrine cells is unclear. To study the role of menin-dependent H3K4me3, we performed in vitro differentiation of wild-type as well as menin-null mouse embryonic stem cells (mESCs) into pancreatic islet-like endocrine cells (PILECs). Gene expression analysis and genome-wide H3K4me3 ChIP-Seq profiling in wild-type and menin-null mESCs and PILECs revealed menin-dependent H3K4me3 at the imprinted Dlk1-Meg3 locus in mESCs, and all four Hox loci in differentiated PILECs. Specific and significant loss of H3K4me3 and gene expression was observed for genes within the imprinted Dlk1-Meg3 locus in menin-null mESCs and the Hox loci in menin-null PILECs. Given that the reduced expression of genes within the DLK1-MEG3 locus and the HOX loci is associated with MEN1-like sporadic tumors, our data suggests a possible role for menin-dependent H3K4me3 at these genes in the initiation and progression of sporadic pancreatic endocrine tumors. Furthermore, our investigation also demonstrates that menin-null mESCs can be differentiated in vitro into islet-like endocrine cells, underscoring the utility of menin-null mESC-derived specialized cell types for genome-wide high-throughput studies. Genome-wide mapping of H3K4me3 and microarray gene expression profiling in TC-1 wild-type (WT) mESCs, menin-null (Men1-ko) mESCs (3.2N), pancreatic islet-like endocrine cells (PILECs) derived from WT mESCs, and PILECs derived from Men1-ko mESCs.
Project description:This SuperSeries is composed of the following subset Series: GSE41706: Expression data from adult (9 month-old) hearts from GRK2 heterozygous C57BL/6J mice and its wild type littermates GSE41807: Expression data from adult (9 month-old) and young (4 month-old) hearts from C57BL/6J mice GSE41808: Expression data from adult (9 month-old) and young (4 month-old) hearts from GRK2 heterozygous C57BL/6J mice. GSE41809: Expression data from young (4 month-old) hearts from GRK2 heterozygous C57BL/6J mice and its wild type littermates Refer to individual Series
Project description:Multiple endocrine neoplasia type1 (MEN1), an inherited autosomal dominant syndrome characterized by the development of endocrine tumors including NETs, results from mutation in the MEN1 gene that encodes the protein menin. In mouse models, heterozygous loss of Men1 leads to multiple endocrine tumors with loss of heterozygocity at the Men1 locus. Men1 interacts with several partners to regulate cellular processes and gene expression through regulating histone modification. We used microarrays to detail the global gene expression change in Men1 knockout MEFs and identified up-regulated genes during this process.
Project description:Inactivating mutations in the MEN1 gene predisposing to the multiple endocrine neoplasia type 1 (MEN1) syndrome can also cause sporadic pancreatic endocrine tumors. MEN1 encodes menin, a subunit of MLL1/MLL2-containing histone methyltransferase complexes that trimethylate histone H3 at lysine 4 (H3K4me3). The importance of menin-dependent H3K4me3 in normal and transformed pancreatic endocrine cells is unclear. To study the role of menin-dependent H3K4me3, we performed in vitro differentiation of wild-type as well as menin-null mouse embryonic stem cells (mESCs) into pancreatic islet-like endocrine cells (PILECs). Gene expression analysis and genome-wide H3K4me3 ChIP-Seq profiling in wild-type and menin-null mESCs and PILECs revealed menin-dependent H3K4me3 at the imprinted Dlk1-Meg3 locus in mESCs, and all four Hox loci in differentiated PILECs. Specific and significant loss of H3K4me3 and gene expression was observed for genes within the imprinted Dlk1-Meg3 locus in menin-null mESCs and the Hox loci in menin-null PILECs. Given that the reduced expression of genes within the DLK1-MEG3 locus and the HOX loci is associated with MEN1-like sporadic tumors, our data suggests a possible role for menin-dependent H3K4me3 at these genes in the initiation and progression of sporadic pancreatic endocrine tumors. Furthermore, our investigation also demonstrates that menin-null mESCs can be differentiated in vitro into islet-like endocrine cells, underscoring the utility of menin-null mESC-derived specialized cell types for genome-wide high-throughput studies.
Project description:Inactivating mutations in the MEN1 gene predisposing to the multiple endocrine neoplasia type 1 (MEN1) syndrome can also cause sporadic pancreatic endocrine tumors. MEN1 encodes menin, a subunit of MLL1/MLL2-containing histone methyltransferase complexes that trimethylate histone H3 at lysine 4 (H3K4me3). The importance of menin-dependent H3K4me3 in normal and transformed pancreatic endocrine cells is unclear. To study the role of menin-dependent H3K4me3, we performed in vitro differentiation of wild-type as well as menin-null mouse embryonic stem cells (mESCs) into pancreatic islet-like endocrine cells (PILECs). Gene expression analysis and genome-wide H3K4me3 ChIP-Seq profiling in wild-type and menin-null mESCs and PILECs revealed menin-dependent H3K4me3 at the imprinted Dlk1-Meg3 locus in mESCs, and all four Hox loci in differentiated PILECs. Specific and significant loss of H3K4me3 and gene expression was observed for genes within the imprinted Dlk1-Meg3 locus in menin-null mESCs and the Hox loci in menin-null PILECs. Given that the reduced expression of genes within the DLK1-MEG3 locus and the HOX loci is associated with MEN1-like sporadic tumors, our data suggests a possible role for menin-dependent H3K4me3 at these genes in the initiation and progression of sporadic pancreatic endocrine tumors. Furthermore, our investigation also demonstrates that menin-null mESCs can be differentiated in vitro into islet-like endocrine cells, underscoring the utility of menin-null mESC-derived specialized cell types for genome-wide high-throughput studies.