Project description:This SuperSeries is composed of the following subset Series: GSE29614: Time Course of Young Adults Vaccinated with Influenza TIV Vaccine during 2007/08 Flu Season GSE29615: Time Course of Young Adults Vaccinated with Influenza LAIV Vaccine during 2008/09 Flu Season GSE29617: Time Course of Young Adults Vaccinated with Influenza TIV Vaccine during 2008/09 Flu Season GSE29618: FACS-sorted cells from Young Adults Vaccinated with Influenza TIV or LAIV Vaccines during 2008/09 Flu Season Refer to individual Series
Project description:Systems biology approach to examine effects of seasonal flu vaccination in adults of different ages on gene expression, cytokine stimulation and serum cytokines with parameters such as immune senescence to uncover new markers and mechanisms behind failure of immune function in many older people. Total RNA was extracted from whole-blood lysates obtained from individuals immediately prior to vaccination against seasonal influenza, followed by depletion of globin messenger RNA. The goal was to evaluate potential gene expression signatures at Day 0 associated with immune senescence.
Project description:Systems biology approach to examine effects of seasonal flu vaccination in adults of different ages on gene expression, cytokine stimulation and serum cytokines with parameters such as immune senescence to uncover new markers and mechanisms behind failure of immune function in many older people. Total RNA was extracted from whole-blood lysates obtained from individuals immediately prior to vaccination against seasonal influenza, followed by depletion of globin messenger RNA. The goal was to evaluate potential gene expression signatures at Day 0 associated with immune senescence.
Project description:Here we have used a systems biology approach to study innate and adaptive responses to vaccination against influenza in humans during three consecutive influenza seasons. We studied healthy adults vaccinated with trivalent inactivated influenza vaccine (TIV) or live attenuated influenza vaccine (LAIV). TIV induced higher antibody titers and more plasmablasts than LAIV did. In subjects vaccinated with TIV, early molecular signatures correlated with and could be used to accurately predict later antibody titers in two independent trials. Notably, expression of the kinase CaMKIV at day 3 was inversely correlated with later antibody titers. Vaccination of CaMKIV-deficient mice with TIV induced enhanced antigen-specific antibody titers, which demonstrated an unappreciated role for CaMKIV in the regulation of antibody responses. Thus, systems approaches can be used to predict immunogenicity and provide new mechanistic insights about vaccines.
Project description:Systems biology is an approach to comprehensively study complex interactions within a biological system. Most published systems vaccinology studies have utilized whole blood or peripheral blood mononuclear cells (PBMC) to monitor the immune response after vaccination. Because human blood is comprised of multiple hematopoietic cell types, the potential for masking responses of under-represented cell populations is increased when analyzing whole blood or PBMC. To investigate the contribution of individual cell types to the immune response after vaccination, we established a rapid and efficient method to purify human T and B cells, natural killer (NK) cells, myeloid dendritic cells (mDC), monocytes, and neutrophils from fresh venous blood. Purified cells were fractionated and processed in a single day. RNA-Seq and quantitative shotgun proteomics were performed to determine expression profiles for each cell type prior to and after inactivated seasonal influenza vaccination. Our results show that transcriptomic and proteomic profiles generated from purified immune cells differ significantly from PBMC. Differential expression analysis for each immune cell type also shows unique transcriptomic and proteomic expression profiles as well as changing biological networks at early time points after vaccination. This cell type-specific information provides a more comprehensive approach to monitor vaccine responses.
Project description:Systems biology approach to examine effects of seasonal flu vaccination in adults of different ages on gene expression, cytokine stimulation and serum cytokines with parameters such as immune senescence to uncover new markers and mechanisms behind failure of immune function in many older people.
Project description:Systems biology approach to examine effects of seasonal flu vaccination in adults of different ages on gene expression, cytokine stimulation and serum cytokines with parameters such as immune senescence to uncover new markers and mechanisms behind failure of immune function in many older people.
Project description:Systems biology approach to examine effects of seasonal flu vaccination in adults of different ages on gene expression, cytokine stimulation and serum cytokines with parameters such as immune senescence to uncover new markers and mechanisms behind failure of immune function in many older people.
Project description:Systems biology approach to examine effects of seasonal flu vaccination in adults of different ages on gene expression, cytokine stimulation and serum cytokines with parameters such as immune senescence to uncover new markers and mechanisms behind failure of immune function in many older people.