Project description:Drosophila dosage compensation is an epigenetic phenomenon in which the transcription of most genes on X-chromosome is enhanced by approximately two folds in males to equalize that in females. In this study, we provide evidence that transcriptional repressors, such as HP1 and linker histone H1, are globally reduced on male X chromosome. We further investigated the role of HP1 and linker H1 on X chromosome dosage compensation using flies with overexpression of HP1 and H1, we demonstrate that these repressors surpress H4K16 acetylation, presence of the elongating RNA Pol II and the transcription of the genes on male X chromosomes. To understand how H1 and HP1 are regulated on male X chromosome, we next explored the relationship between MOF and the two repressors of chromatin. We show that the hyperacetylation of H4K16 induced by MOF resulted in the loss of H1 and HP1 on chromatin and global chromatin decondensation. Our biochemical analysis further shows that the presence of acetylation on histone H4 at lysine 16 directly inhibits the interaction between histone H4 and linker H1. This study therefore provides novel clues on understanding the dynamic regulation of chromatin regulators on male X chromosome dosage compensation.
Project description:The Drosophila MSL complex mediates dosage compensation by increasing transcription of the single X chromosome in males approximately two-fold. This is accomplished through recognition of the X chromosome and subsequent acetylation of histone H4K16 on X-linked genes. Initial binding to the X is thought to occur at a subset of sites. However, the consensus sequence motif of entry sites (M-bM-^@M-^\MSL recognition elementM-bM-^@M-^] or MRE) is only slightly enriched on the X (~2 fold), and only a fraction of them is utilized by the MSL complex. Here we ask whether chromatin context could distinguish between utilized and non-utilized copies of the motif, by comparing their relative enrichment for histone modifications and chromosomal proteins mapped in the NHGRI modENCODE project. Through a comparative analysis of the chromatin features in male S2 cells, which contain MSL complex, and female Kc cells, which lack the complex, we find that the presence of active chromatin modifications, together with an elevated local GC content in surrounding sequence, has strong predictive value for functional MSL entry sites, independent of MSL binding. We tested these sites for function in Kc cells by RNAi knockdown of Sxl, resulting in induction of MSL complex. We show that ectopic MSL expression in Kc cells leads to H4K16 acetylation around these sites, and a relative increase in X chromosome transcription. Collectively, our results support a model in which a pre-existing active chromatin environment, coincident with H3K36me3, contributes to MSL entry site selection. The consequences of MSL targeting of the male X chromosome include increase in nucleosome lability, enrichment for H4K16 acetylation and JIL-1 kinase, and depletion of linker histone H1 on active X-linked genes. Our finding serves as a model to understand how chromatin and local sequence features are involved in the selection of functional protein binding sites in the genome. The key Drosophila female sex determinant protein, SXL, represses dosage compensation by inhibiting MSL2 translation. Loss of SXL results in the expression, stabilization, and targetting of the MSL complex in female cells. Therefore, depletion of SXL by RNA interference (RNAi) in female Kc cells will lead to a MSL2-dependent increase in transcription from the female X chromosomes, consistent with the induction of dosage compensation. In this experiment, we generated ChIP-chip profiles of H4K16 acetylation (H4K16ac) in Kc cells of control (GFP) and Sxl RNAi. For ChIP, we used Upstate (now Millipore) anti-H4K16ac antibody, catalog # 07-329, lot #JBC1355376.
Project description:The Drosophila MSL complex mediates dosage compensation by increasing transcription of the single X chromosome in males approximately two-fold. This is accomplished through recognition of the X chromosome and subsequent acetylation of histone H4K16 on X-linked genes. Initial binding to the X is thought to occur at a subset of sites. However, the consensus sequence motif of entry sites (“MSL recognition element” or MRE) is only slightly enriched on the X (~2 fold), and only a fraction of them is utilized by the MSL complex. Here we ask whether chromatin context could distinguish between utilized and non-utilized copies of the motif, by comparing their relative enrichment for histone modifications and chromosomal proteins mapped in the NHGRI modENCODE project. Through a comparative analysis of the chromatin features in male S2 cells, which contain MSL complex, and female Kc cells, which lack the complex, we find that the presence of active chromatin modifications, together with an elevated local GC content in surrounding sequence, has strong predictive value for functional MSL entry sites, independent of MSL binding. We tested these sites for function in Kc cells by RNAi knockdown of Sxl, resulting in induction of MSL complex. We show that ectopic MSL expression in Kc cells leads to H4K16 acetylation around these sites, and a relative increase in X chromosome transcription. Collectively, our results support a model in which a pre-existing active chromatin environment, coincident with H3K36me3, contributes to MSL entry site selection. The consequences of MSL targeting of the male X chromosome include increase in nucleosome lability, enrichment for H4K16 acetylation and JIL-1 kinase, and depletion of linker histone H1 on active X-linked genes. Our finding serves as a model to understand how chromatin and local sequence features are involved in the selection of functional protein binding sites in the genome. The key Drosophila female sex determinant protein, SXL, represses dosage compensation by inhibiting MSL2 translation. Loss of SXL results in the expression, stabilization, and targetting of the MSL complex in female cells. Therefore, depletion of SXL by RNA interference (RNAi) in female Kc cells will lead to a MSL2-dependent increase in transcription from the female X chromosomes, consistent with the induction of dosage compensation. In this experiment, we generated gene expression profiles of Kc cells of control (GFP), Sxl RNAi and Sxl-Msl2 RNAi experiments.
Project description:Linker histone H1 and heterochromatin protein 1 (HP1) are essential components ofheterochromatin which contribute to the transcriptional repression of genes. It has been shown that the methylation mark on the histone H1 serves as a specific recognition code for the chromodomain of HP1, however, the functional role of the HP1/H1 complex remains elusive. Using C. elegans, we elucidate the function of the linker histone variant HIS-24 and heterochromatin proteins HPL/HP1 in the cooperative transcriptional regulation of immunerelevant and stress resistance genes. We also show that HIS-24 and HPL act redundantly in vulval cell fate specification and gonad development. Finally, we provide the first evidence that HPL-1 interacts with HIS-24 at mono-methylated lysine 14 and associates in vivo with promoters of infection-inducible genes: the caenacin (cnc)- and the thaumatin (thn)- gene clusters. Our results highlight a functional link between epigenetic regulation by HP1/H1 the innate immune system and stress response. The experiment was performed using biological independent replicates of pooled worms. For the KO mutants we used duplicates and for WT condition quadruplicates.
Project description:The H4K16 acetyltransferase MOF plays a crucial role in dosage compensation in Drosophila, but has additional, global functions. We compared the molecular context and effect of MOF in male and female flies combining chromosome-wide mapping and transcriptome studies with analyses of defined reporter loci in transgenic flies. MOF distributes dynamically between two complexes, the Dosage Compensation Complex and a complex containing MBD-R2, a global facilitator of transcription. These different targeting principles define the distribution of MOF between the X chromosome and autosomes and at transcription units with 5’ or 3’ enrichment. The male X chromosome differs from all other chromosomes in that H4K16 acetylation levels do not correlate with transcription output. The reconstitution of this phenomenon at a model locus revealed that the activation potential of MOF is constraint in male cells in the context of the DCC to arrive at the two-fold activation of transcription characteristic of dosage compensation. ChIP-chip profiling of MBD-R2, MOF and MSL1 in adult male and female flies, and SL2 cells, incl. at least 3 biological replicates
Project description:Linker histone H1 and heterochromatin protein 1 (HP1) are essential components ofheterochromatin which contribute to the transcriptional repression of genes. It has been shown that the methylation mark on the histone H1 serves as a specific recognition code for the chromodomain of HP1, however, the functional role of the HP1/H1 complex remains elusive. Using C. elegans, we elucidate the function of the linker histone variant HIS-24 and heterochromatin proteins HPL/HP1 in the cooperative transcriptional regulation of immunerelevant and stress resistance genes. We also show that HIS-24 and HPL act redundantly in vulval cell fate specification and gonad development. Finally, we provide the first evidence that HPL-1 interacts with HIS-24 at mono-methylated lysine 14 and associates in vivo with promoters of infection-inducible genes: the caenacin (cnc)- and the thaumatin (thn)- gene clusters. Our results highlight a functional link between epigenetic regulation by HP1/H1 the innate immune system and stress response.
Project description:The H4K16 acetyltransferase MOF plays a crucial role in dosage compensation in Drosophila, but has additional, global functions in gene control. We compared the molecular context and effect of MOF activity in male and female flies combining chromosome-wide mapping and transcriptome studies with analyses of defined reporter loci in transgenic flies. MOF distributes dynamically between two types of complexes, the Dosage Compensation Complex (DCC) and complexes containing MBD-R2, a global facilitator of transcription. These different targeting principles define the distribution of MOF between the X chromosome and autosomes and at transcription units with 5’ or 3’ enrichment. The male X chromosome differs from all other chromosomes in that H4K16 acetylation levels do not correlate with transcription output. The reconstitution of this phenomenon at a model locus revealed that the activation potential of MOF is constrained in male cells in the context of the DCC to arrive at the two-fold activation of transcription characteristic of dosage compensation.
Project description:The H4K16 acetyltransferase MOF plays a crucial role in dosage compensation in Drosophila, but has additional, global functions. We compared the molecular context and effect of MOF in male and female flies combining chromosome-wide mapping and transcriptome studies with analyses of defined reporter loci in transgenic flies. MOF distributes dynamically between two complexes, the Dosage Compensation Complex and a complex containing MBD-R2, a global facilitator of transcription. These different targeting principles define the distribution of MOF between the X chromosome and autosomes and at transcription units with 5’ or 3’ enrichment. The male X chromosome differs from all other chromosomes in that H4K16 acetylation levels do not correlate with transcription output. The reconstitution of this phenomenon at a model locus revealed that the activation potential of MOF is constraint in male cells in the context of the DCC to arrive at the two-fold activation of transcription characteristic of dosage compensation.
Project description:We have performed a comparison of global patterns of gene expression between two bird species, the chicken and zebra finch, especially with regard to sex bias of autosomal vs. Z chromosome genes, dosage compensation and evolution of sex bias. Both species appear to lack a Z chromosome-wide mechanism of dosage compensation, because both have a similar pattern of significantly higher expression of Z genes in males relative to females. Unlike the chicken Z chromosome, which has female-specific expression of the non-coding RNA MHM (male hypermethylated), and acetylation of histone 4 lysine 16 (H4K16) near MHM, the zebra finch Z chromosome appears to lack the MHM sequence and acetylation of H4K16. The zebra finch also does not show the reduced male to female (M:F) ratio of gene expression near MHM similar to that found in the chicken. Although the M:F ratios of Z chromosome gene expression are similar across tissues and ages within each species, they differ between the two species. Z genes showing the greatest species difference in M:F ratio were concentrated near the MHM region of the chicken Z chromosome. The current study shows that the zebra finch differs from the chicken because it lacks a specialized region of greater dosage compensation along the Z chromosome, and shows dosage compensation for a different set of Z genes than the chicken. These patterns suggest that different avian taxa may have evolved specific compensatory mechanisms.
Project description:We have performed a comparison of global patterns of gene expression between two bird species, the chicken and zebra finch, especially with regard to sex bias of autosomal vs. Z chromosome genes, dosage compensation and evolution of sex bias. Both species appear to lack a Z chromosome-wide mechanism of dosage compensation, because both have a similar pattern of significantly higher expression of Z genes in males relative to females. Unlike the chicken Z chromosome, which has female-specific expression of the non-coding RNA MHM (male hypermethylated), and acetylation of histone 4 lysine 16 (H4K16) near MHM, the zebra finch Z chromosome appears to lack the MHM sequence and acetylation of H4K16. The zebra finch also does not show the reduced male to female (M:F) ratio of gene expression near MHM similar to that found in the chicken. Although the M:F ratios of Z chromosome gene expression are similar across tissues and ages within each species, they differ between the two species. Z genes showing the greatest species difference in M:F ratio were concentrated near the MHM region of the chicken Z chromosome. The current study shows that the zebra finch differs from the chicken because it lacks a specialized region of greater dosage compensation along the Z chromosome, and shows dosage compensation for a different set of Z genes than the chicken. These patterns suggest that different avian taxa may have evolved specific compensatory mechanisms. Experimental groups: Post-hatch Days 1, 25, 45, and 90+ for both Females and Males (d1_F, d1_M, d25_F, d25_M, d45_F, d45_M, adult_F, adult_M). Biological replicates: 6 per group. One test developmental stage subject and one universal SoNG reference (pooled Taeniopygia guttata brain) per array.