Project description:Prediction of neurological outcomes shortly after cardiac arrest would represent a major breakthrough. We tested the ability of gene expression profiles of blood cells to predict outcome in cardiac arrest patients.
Project description:Prediction of neurological outcomes shortly after cardiac arrest would represent a major breakthrough. We tested the ability of gene expression profiles of blood cells to predict outcome in cardiac arrest patients. 35 consecutive cardiac arrest patients treated with therapeutic hypothermia (33°C for 24h) were included in this prospective monocentre study. Cerebral Performance Category (CPC) was determined at discharge and 6 months later. All patients had blood sampling at the end of hypothermia. Gene expression profiles of blood cells were determined using 25,000~gene microarray in two groups of patients: good outcome (CPC 1-2) and bad outcome (CPC 3-5).
Project description:Neurological injury drives most deaths and morbidity among patients hospitalized for out-of-hospital cardiac arrest (OHCA). Despite its clinical importance, there are no effective pharmacological therapies targeting post-cardiac arrest (CA) neurological injury. Here we analyzed circulating immune cells from a large OHCA patient cohort, finding that lymphopenia independently associated with poor neurological outcomes. Single cell RNA-sequencing of immune cells showed that T cells with features of both innate T cells and natural killer (NK) cells were increased in patients with favorable neurological outcomes. We more specifically identified an early increase in circulating diverse NKT cells (dNKT) in a separate cohort of OHCA patients with good neurological outcomes. These cells harbored a diverse T cell receptor repertoire but were consistently specific for sulfatide antigen. In mice, we found that sulfatide-specific dNKT cells trafficked to the brain after CA and resuscitation. In the brains of mice lacking NKT cells (Cd1d-/-), we observed increased inflammatory chemokine and cytokine expression and accumulation of macrophages when compared with wild-type mice. Cd1d-/- mice also had increased neuronal injury, neurological dysfunction, and worse mortality after CA. To therapeutically enhance dNKT cell activity, we treated mice with sulfatide lipid after CA, showing that it improved neurological function. Together, these data show that sulfatide-specific dNKT cells are associated with good neurological outcomes after clinical OHCA and are neuroprotective in mice after CA. Strategies to enhance the number or function of dNKT cells may thus represent a treatment approach for CA.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:As the evolution of miRNA genes has been found to be one of the important factors in formation of the modern type of man, we performed a comparative analysis of the evolution of miRNA genes in two archaic hominines, Homo sapiens neanderthalensis and Homo sapiens denisova, and elucidated the expression of their target mRNAs in bain.A comparative analysis of the genomes of primates, including species in the genus Homo, identified a group of miRNA genes having fixed substitutions with important implications for the evolution of Homo sapiens neanderthalensis and Homo sapiens denisova. The mRNAs targeted by miRNAs with mutations specific for Homo sapiens denisova exhibited enhanced expression during postnatal brain development in modern humans. By contrast, the expression of mRNAs targeted by miRNAs bearing variations specific for Homo sapiens neanderthalensis was shown to be enhanced in prenatal brain development.Our results highlight the importance of changes in miRNA gene sequences in the course of Homo sapiens denisova and Homo sapiens neanderthalensis evolution. The genetic alterations of miRNAs regulating the spatiotemporal expression of multiple genes in the prenatal and postnatal brain may contribute to the progressive evolution of brain function, which is consistent with the observations of fine technical and typological properties of tools and decorative items reported from archaeological Denisovan sites. The data also suggest that differential spatial-temporal regulation of gene products promoted by the subspecies-specific mutations in the miRNA genes might have occurred in the brains of Homo sapiens denisova and Homo sapiens neanderthalensis, potentially contributing to the cultural differences between these two archaic hominines.
Project description:PurposeWe investigated the evidence of recent positive selection in the human phototransduction system at single nucleotide polymorphism (SNP) and gene level.MethodsSNP genotyping data from the International HapMap Project for European, Eastern Asian, and African populations was used to discover differences in haplotype length and allele frequency between these populations. Numeric selection metrics were computed for each SNP and aggregated into gene-level metrics to measure evidence of recent positive selection. The level of recent positive selection in phototransduction genes was evaluated and compared to a set of genes shown previously to be under recent selection, and a set of highly conserved genes as positive and negative controls, respectively.ResultsSix of 20 phototransduction genes evaluated had gene-level selection metrics above the 90th percentile: RGS9, GNB1, RHO, PDE6G, GNAT1, and SLC24A1. The selection signal across these genes was found to be of similar magnitude to the positive control genes and much greater than the negative control genes.ConclusionsThere is evidence for selective pressure in the genes involved in retinal phototransduction, and traces of this selective pressure can be demonstrated using SNP-level and gene-level metrics of allelic variation. We hypothesize that the selective pressure on these genes was related to their role in low light vision and retinal adaptation to ambient light changes. Uncovering the underlying genetics of evolutionary adaptations in phototransduction not only allows greater understanding of vision and visual diseases, but also the development of patient-specific diagnostic and intervention strategies.