Project description:This SuperSeries is composed of the following subset Series: GSE22322: Chromatin remodeling enzyme Brg1 is required for mouse lens fiber cell terminal differentiation and their denucleation [lens tissue] GSE25168: Chromatin remodeling enzyme Brg1 is required for mouse lens fiber cell terminal differentiation and their denucleation [eyeball tissue] Refer to individual Series
Project description:Genome-wide approach to identify the cell-autonomous role of Brg1 in lens fiber cell terminal differentiation. To examine roles of Brg1 in mouse lens development, a dnBrg1 transgenic construct was expressed using the lens-specific alphaA-crystallin promoter in postmitotic lens fiber cells. Morphological studies revealed abnormal lens fiber cell differentiation in transgenic lenses resulting in cataract. Electron microscopic studies showed abnormal lens suture formation and incomplete karyolysis (denucleation) of lens fiber cells. To identify genes regulated by Brg1, RNA expression profiling was performed in E15.5 embryonic wild type and dnBrg1 transgenic lenses. In addition, comparisons between differentially expressed genes in dnBrg1 transgenic, Pax6 heterozygous, and Hsf4 homozygous lenses identified multiple genes co-regulated by Brg1, Hsf4 and Pax6. Among them DNase IIbeta, a key enzyme required for lens fiber cell denucleation, was found downregulated in each of the Pax6, Brg1 and Hsf4 model systems. Lens-specific deletion of Brg1 using conditional gene targeting demonstrated that Brg1 was required for lens fiber cell differentiation and indirectly for retinal development but was not essential for lens lineage formation. Wild type and dnBrg1 transgenic lenses, 4 biological replicates each
Project description:Genome-wide approach to identify the cell-autonomous role of Brg1 in lens fiber cell terminal differentiation. To examine roles of Brg1 in mouse lens development, a dnBrg1 transgenic construct was expressed using the lens-specific alphaA-crystallin promoter in postmitotic lens fiber cells. Morphological studies revealed abnormal lens fiber cell differentiation in transgenic lenses resulting in cataract. Electron microscopic studies showed abnormal lens suture formation and incomplete karyolysis (denucleation) of lens fiber cells. To identify genes regulated by Brg1, RNA expression profiling was performed in E15.5 embryonic wild type and dnBrg1 transgenic lenses. In addition, comparisons between differentially expressed genes in dnBrg1 transgenic, Pax6 heterozygous, and Hsf4 homozygous lenses identified multiple genes co-regulated by Brg1, Hsf4 and Pax6. Among them DNase IIbeta, a key enzyme required for lens fiber cell denucleation, was found downregulated in each of the Pax6, Brg1 and Hsf4 model systems. Lens-specific deletion of Brg1 using conditional gene targeting demonstrated that Brg1 was required for lens fiber cell differentiation and indirectly for retinal development but was not essential for lens lineage formation.
Project description:Chromatin remodeling enzyme Brg1 is required for mouse lens fiber cell terminal differentiation and their denucleation [eyeball tissue]
| PRJNA142797 | ENA
Project description:Chromatin remodeling enzyme Brg1 is required for mouse lens fiber cell terminal differentiation and their denucleation
Project description:Differential expression of HSF4 in null newborn mouse and wildtype lenses was examined to identify putative downstream targets of HSF4. To examine roles of Brg1 in mouse lens development, a dnBrg1 transgenic construct was expressed using the lens-specific aA-crystallin promoter in postmitotic lens fiber cells. Morphological studies revealed abnormal lens fiber cell differentiation in transgenic lenses resulting in cataract. Electron microscopic studies showed abnormal lens suture formation and incomplete karyolysis (denucleation) of lens fiber cells. To identify genes regulated by Brg1, RNA expression profiling was performed in E15.5 embryonic wild type and dnBrg1 transgenic lenses. In addition, comparisons between differentially expressed genes in dnBrg1 transgenic, Pax6 heterozygous, and Hsf4 homozygous lenses identified multiple genes co-regulated by Brg1, Hsf4 and Pax6. Among them DNase IIb, a key enzyme required for lens fiber cell denucleation, was found downregulated in each of the Pax6, Brg1 and Hsf4 model systems. Lens-specific deletion of Brg1 using conditional gene targeting demonstrated that Brg1 was required for lens fiber cell differentiation and indirectly for retinal development but was not essential for lens lineage formation. Keywords: Differential mRNA Expression Three biological replicate experiments were performed with HSF null and wildtype lenses.
Project description:Differential expression of HSF4 in null newborn mouse and wildtype lenses was examined to identify putative downstream targets of HSF4. To examine roles of Brg1 in mouse lens development, a dnBrg1 transgenic construct was expressed using the lens-specific aA-crystallin promoter in postmitotic lens fiber cells. Morphological studies revealed abnormal lens fiber cell differentiation in transgenic lenses resulting in cataract. Electron microscopic studies showed abnormal lens suture formation and incomplete karyolysis (denucleation) of lens fiber cells. To identify genes regulated by Brg1, RNA expression profiling was performed in E15.5 embryonic wild type and dnBrg1 transgenic lenses. In addition, comparisons between differentially expressed genes in dnBrg1 transgenic, Pax6 heterozygous, and Hsf4 homozygous lenses identified multiple genes co-regulated by Brg1, Hsf4 and Pax6. Among them DNase IIb, a key enzyme required for lens fiber cell denucleation, was found downregulated in each of the Pax6, Brg1 and Hsf4 model systems. Lens-specific deletion of Brg1 using conditional gene targeting demonstrated that Brg1 was required for lens fiber cell differentiation and indirectly for retinal development but was not essential for lens lineage formation. Keywords: Differential mRNA Expression
Project description:Genome-wide approach to identify the cell-autonomous role of Brg1 in lens fiber cell terminal differentiation. Differential gene expression was analyzed in Brg1 lens-conditional knockout and wildtype newborn mouse eyeballs, with subsequent comparison of this data with the dnBrg1 mouse lenses expression data. Keywords: Differential gene expression Three biological replicate experiments were performed.
Project description:Genome-wide approach to identify the cell-autonomous role of Snf2h in lens fiber cell terminal differentiation. Differential gene expression was analyzed in Snf2h lens-conditional knockout and wildtype newborn mouse eyeballs, with subsequent comparison of this data with the Brg1 lens-conditional knockout mouse eyes expression data (GSE25168). Four biological replicate experiments were performed.
Project description:Genome-wide approach to identify the cell-autonomous role of Brg1 in lens fiber cell terminal differentiation. Differential gene expression was analyzed in Brg1 lens-conditional knockout and wildtype newborn mouse eyeballs, with subsequent comparison of this data with the dnBrg1 mouse lenses expression data. Keywords: Differential gene expression