Project description:This SuperSeries is composed of the following subset Series: GSE27714: Enhancer Decommissioning by LSD1 During Embryonic Stem Cell Differentiation (expression) GSE27841: Enhancer Decommissioning by LSD1 During Embryonic Stem Cell Differentiation (ChIP-seq) Refer to individual Series
Project description:Transcription factors and chromatin modifiers play important roles in programming and reprogramming of cellular states during development. Much is known about the role of these regulators in gene activation, but relatively little is known about the critical process of enhancer silencing during differentiation. Here we show that the H3K4/K9 histone demethylase LSD1 plays an essential role in decommissioning enhancers during differentiation of embryonic stem cells (ESCs). LSD1 occupies enhancers of active genes critical for control of ESC state. However, LSD1 is not essential for maintenance of ESC identity. Instead, ESCs lacking LSD1 activity fail to fully differentiate and ESC-specific enhancers fail to undergo the histone demethylation events associated with differentiation. At enhancers, LSD1 is a component of the NuRD complex, which contains additional subunits that are necessary for ESC differentiation. We propose that the LSD1-NuRD complex decommissions enhancers of the pluripotency program upon differentiation, which is essential for complete shutdown of the ESC gene expression program and the transition to new cell states. This represents the expression part of the study.
Project description:Transcription factors and chromatin modifiers play important roles in programming and reprogramming of cellular states during development. Much is known about the role of these regulators in gene activation, but relatively little is known about the critical process of enhancer silencing during differentiation. Here we show that the H3K4/K9 histone demethylase LSD1 plays an essential role in decommissioning enhancers during differentiation of embryonic stem cells (ESCs). LSD1 occupies enhancers of active genes critical for control of ESC state. However, LSD1 is not essential for maintenance of ESC identity. Instead, ESCs lacking LSD1 activity fail to fully differentiate and ESC-specific enhancers fail to undergo the histone demethylation events associated with differentiation. At enhancers, LSD1 is a component of the NuRD complex, which contains additional subunits that are necessary for ESC differentiation. We propose that the LSD1-NuRD complex decommissions enhancers of the pluripotency program upon differentiation, which is essential for complete shutdown of the ESC gene expression program and the transition to new cell states. This is the ChIP-seq part of the study.
Project description:Transcription factors and chromatin modifiers play important roles in programming and reprogramming of cellular states during development. Much is known about the role of these regulators in gene activation, but relatively little is known about the critical process of enhancer silencing during differentiation. Here we show that the H3K4/K9 histone demethylase LSD1 plays an essential role in decommissioning enhancers during differentiation of embryonic stem cells (ESCs). LSD1 occupies enhancers of active genes critical for control of ESC state. However, LSD1 is not essential for maintenance of ESC identity. Instead, ESCs lacking LSD1 activity fail to fully differentiate and ESC-specific enhancers fail to undergo the histone demethylation events associated with differentiation. At enhancers, LSD1 is a component of the NuRD complex, which contains additional subunits that are necessary for ESC differentiation. We propose that the LSD1-NuRD complex decommissions enhancers of the pluripotency program upon differentiation, which is essential for complete shutdown of the ESC gene expression program and the transition to new cell states.
Project description:Transcription factors and chromatin modifiers play important roles in programming and reprogramming of cellular states during development. Much is known about the role of these regulators in gene activation, but relatively little is known about the critical process of enhancer silencing during differentiation. Here we show that the H3K4/K9 histone demethylase LSD1 plays an essential role in decommissioning enhancers during differentiation of embryonic stem cells (ESCs). LSD1 occupies enhancers of active genes critical for control of ESC state. However, LSD1 is not essential for maintenance of ESC identity. Instead, ESCs lacking LSD1 activity fail to fully differentiate and ESC-specific enhancers fail to undergo the histone demethylation events associated with differentiation. At enhancers, LSD1 is a component of the NuRD complex, which contains additional subunits that are necessary for ESC differentiation. We propose that the LSD1-NuRD complex decommissions enhancers of the pluripotency program upon differentiation, which is essential for complete shutdown of the ESC gene expression program and the transition to new cell states.
Project description:Enhancer reactivation and pluripotency gene (PpG) expression could induce stemness and enhance tumorigenicity in cancer stem cells. Silencing of PpG enhancers (PpGe) during embryonic stem cell differentiation involves Lsd1–mediated H3K4me1 demethylation followed by DNA methylation. Here, we observed a widespread retention of H3K4me1 and DNA hypomethylation at PpGe associated with a partial repression of PpGs in F9 embryonal carcinoma cells (ECCs) post-differentiation. The absence of H3K4me1 demethylation could not be rescued by Lsd1 overexpression. Based on the observation that H3K4me1 demethylation is accompanied by strong Oct4 repression in P19 ECCs, we tested if Lsd1-Oct4 interaction affects Lsd1 catalytic activity. Our data show a dose-dependent inhibition of Lsd1 by Oct4 in vitro and retention of H3K4me1 at PpGe post-differentiation in Oct4 overexpressing P19 ECCs. These data suggest that Lsd1-Oct4 interaction in cancer stem cells may establish a primed enhancer state that is susceptible to reactivation leading to aberrant PpG expression.