Project description:This SuperSeries is composed of the following subset Series: GSE27507: Gene expression in pluripotent stem cells derived after somatic cell genome transfer into human oocytes GSE28022: Gene expression in blastomeres after transfer of somatic cells into human oocytes Refer to individual Series
Project description:The transfer of somatic cell nuclei into oocytes can give rise to pluripotent stem cells, holding promise for autologous cell replacement therapy. Though reprogramming of somatic cells by nuclear transfer was first demonstrated more than 60 years ago, only recently have human diploid embryonic stem cells been derived after nuclear transfer of fetal and neonatal fibroblasts. Because of the therapeutic potential of developing diploid embryonic stem cell lines from adult cells of normal and diseased human subjects, we have systematically investigated the parameters affecting efficiency and developmental potential in their derivation. We found that improvements to the oocyte activation protocol, including the use of both a kinase and a translation inhibitor, and cell culture in the presence of histone deacetylase inhibitors enable development of diploid cells to the blastocyst stage. Developmental efficiency varied significantly between oocyte donors, and was inversely related to the number of days of hormonal stimulation required to reach mature oocytes, while the daily dose of gonadotropin or the total number of MII oocytes retrieved did not affect developmental outcome. The use of diluted Sendai virus in calcium-free medium during nuclear transfer improved developmental potential, while the use of concentrated Sendai virus induced an increase in intracellular calcium and caused premature oocyte activation. Using these modifications to the nuclear transfer protocol, we successfully derived diploid pluripotent stem cell lines from both postnatal and adult somatic cells of a type 1 diabetic subject. The goal of this experiment was to determine if human oocytes have the ability to reprogram a somatic cell genome in the absence of the oocyte genome. Our previous research had indicated that human oocytes can reprogram adult somatic cells if the oocyte genome remains present (Noggle et al. Nature 2011, doi:10.1038/nature10397). The data presented here is part of a new series of experiments aimed at obtaining diploid cells after somatic cell nuclear transfer into enucleated oocytes. In this experiment, adult somatic cells were transferred into enucleated oocytes and thereafter cultured in the presence of 240ng/ml scriptaid for 17 hours. Samples were cultured until cleavage stage and then collected for microarray analysis.
Project description:The transfer of somatic cell nuclei into oocytes can give rise to pluripotent stem cells, holding promise for autologous cell replacement therapy. Though reprogramming of somatic cells by nuclear transfer was first demonstrated more than 60 years ago, only recently have human diploid embryonic stem cells been derived after nuclear transfer of fetal and neonatal fibroblasts. Because of the therapeutic potential of developing diploid embryonic stem cell lines from adult cells of normal and diseased human subjects, we have systematically investigated the parameters affecting efficiency and developmental potential in their derivation. We found that improvements to the oocyte activation protocol, including the use of both a kinase and a translation inhibitor, and cell culture in the presence of histone deacetylase inhibitors enable development of diploid cells to the blastocyst stage. Developmental efficiency varied significantly between oocyte donors, and was inversely related to the number of days of hormonal stimulation required to reach mature oocytes, while the daily dose of gonadotropin or the total number of MII oocytes retrieved did not affect developmental outcome. The use of diluted Sendai virus in calcium-free medium during nuclear transfer improved developmental potential, while the use of concentrated Sendai virus induced an increase in intracellular calcium and caused premature oocyte activation. Using these modifications to the nuclear transfer protocol, we successfully derived diploid pluripotent stem cell lines from both postnatal and adult somatic cells of a type 1 diabetic subject. Gene expression analysis was performed on a total of 5 human cell lines, including an isogenic set of 3 nuclear-transfer embryonic stem cell lines and their parental neonatal fibroblast cell line, as well as a fourth nuclear-transfer embryonic stem cell line, which was derived from adult fibroblasts from a type 1 diabetic subject.
Project description:The exchange of the oocyte’s genome with the genome of a somatic cell, followed by the derivation of pluripotent stem cells, could enable the generation of specific cell types affected in degenerative human diseases. Such cells, carrying the patient’s genome, might be useful for cell replacement. Here we report that the development of human oocytes activated after genome exchange invariably arrests at the late cleavage stages in association with transcriptional abnormalities. In contrast, if the oocyte genome is not removed and the somatic cell genome is merely added, they efficiently develop to the blastocyst stage. Human stem cell lines derived from these blastocysts differentiate into cell types of all three germ layers, and a pluripotent gene expression program is established on the genome derived from the somatic cell. This result demonstrates the feasibility of reprogramming human cells using oocytes and identifies the removal of the oocyte genome as the primary cause of developmental failure after genome exchange. Future work should focus on the critical elements that are associated with the human oocyte genome. Stem cells were derived by reprogramming of skin cells using oocytes ('nuclear transfer') or defined factors (iPS cells), or from IVF blastocysts
Project description:The transfer of somatic cell nuclei into oocytes can give rise to pluripotent stem cells, holding promise for autologous cell replacement therapy. Though reprogramming of somatic cells by nuclear transfer was first demonstrated more than 60 years ago, only recently have human diploid embryonic stem cells been derived after nuclear transfer of fetal and neonatal fibroblasts. Because of the therapeutic potential of developing diploid embryonic stem cell lines from adult cells of normal and diseased human subjects, we have systematically investigated the parameters affecting efficiency and developmental potential in their derivation. We found that improvements to the oocyte activation protocol, including the use of both a kinase and a translation inhibitor, and cell culture in the presence of histone deacetylase inhibitors enable development of diploid cells to the blastocyst stage. Developmental efficiency varied significantly between oocyte donors, and was inversely related to the number of days of hormonal stimulation required to reach mature oocytes, while the daily dose of gonadotropin or the total number of MII oocytes retrieved did not affect developmental outcome. The use of diluted Sendai virus in calcium-free medium during nuclear transfer improved developmental potential, while the use of concentrated Sendai virus induced an increase in intracellular calcium and caused premature oocyte activation. Using these modifications to the nuclear transfer protocol, we successfully derived diploid pluripotent stem cell lines from both postnatal and adult somatic cells of a type 1 diabetic subject.
Project description:The transfer of somatic cell nuclei into oocytes can give rise to pluripotent stem cells, holding promise for autologous cell replacement therapy. Though reprogramming of somatic cells by nuclear transfer was first demonstrated more than 60 years ago, only recently have human diploid embryonic stem cells been derived after nuclear transfer of fetal and neonatal fibroblasts. Because of the therapeutic potential of developing diploid embryonic stem cell lines from adult cells of normal and diseased human subjects, we have systematically investigated the parameters affecting efficiency and developmental potential in their derivation. We found that improvements to the oocyte activation protocol, including the use of both a kinase and a translation inhibitor, and cell culture in the presence of histone deacetylase inhibitors enable development of diploid cells to the blastocyst stage. Developmental efficiency varied significantly between oocyte donors, and was inversely related to the number of days of hormonal stimulation required to reach mature oocytes, while the daily dose of gonadotropin or the total number of MII oocytes retrieved did not affect developmental outcome. The use of diluted Sendai virus in calcium-free medium during nuclear transfer improved developmental potential, while the use of concentrated Sendai virus induced an increase in intracellular calcium and caused premature oocyte activation. Using these modifications to the nuclear transfer protocol, we successfully derived diploid pluripotent stem cell lines from both postnatal and adult somatic cells of a type 1 diabetic subject.
Project description:Human pluripotent stem cells can be derived from somatic cells by forced expression of defined factors, and more recently by nuclear-transfer into human oocytes, revitalizing a debate on whether one reprogramming approach might be advantageous over the other. Here we compared the genetic and epigenetic stability of human nuclear-transfer embryonic stem cell (NT-ESC) lines and isogenic induced pluripotent stem cell (iPSC) lines, derived from the same somatic cell cultures of fetal, neonatal and adult origin. Both cell types shared similar genome-wide gene expression and DNA methylation profiles. Importantly, NT-ESCs and iPSCs have comparable numbers of de novo coding mutations but significantly higher than parthenogenetic ESCs. Similar to iPSCs NT-ESCs displayed clone- and gene-specific aberrations in DNA methylation and allele-specific expression of imprinted genes, similarly to iPSCs. The occurrence of these genetic and epigenetic defects in both NT-ESCs and iPSCs suggests that they are inherent to reprogramming, regardless of the underlying technique. RNA sequencing analysis was performed on a total of 12 human cell lines, including: an isogenic set of 3 nuclear-transfer embryonic stem cell (NT-ESC) lines, 2 RNA-reprogrammed induced pluripotent stem cell (iPSC) lines and their parental neonatal fibroblast cell line; an isogenic set of 1 NT-ESC line, 3 iPSC lines and their parental adult fibroblast cell line (derived from a type 1 diabetic subject); as well as 1 control embryonic stem cell (ESC) line.
Project description:Human pluripotent stem cells can be derived from somatic cells by forced expression of defined factors, and more recently by nuclear-transfer into human oocytes, revitalizing a debate on whether one reprogramming approach might be advantageous over the other. Here we compared the genetic and epigenetic stability of human nuclear-transfer embryonic stem cell (NT-ESC) lines and isogenic induced pluripotent stem cell (iPSC) lines, derived from the same somatic cell cultures of fetal, neonatal and adult origin. Both cell types shared similar genome-wide gene expression and DNA methylation profiles. Importantly, NT-ESCs and iPSCs have comparable numbers of de novo coding mutations but significantly higher than parthenogenetic ESCs. Similar to iPSCs NT-ESCs displayed clone- and gene-specific aberrations in DNA methylation and allele-specific expression of imprinted genes, similarly to iPSCs. The occurrence of these genetic and epigenetic defects in both NT-ESCs and iPSCs suggests that they are inherent to reprogramming, regardless of the underlying technique. Genome-wide DNA methylation profiling by Illumina Infinium HumanMethylation 450K Beadchip was performed on a total of 21 human cell lines, including: an isogenic set of 3 nuclear-transfer embryonic stem cell (NT-ESC) lines, 2 RNA-reprogrammed induced pluripotent stem cell (iPSC) lines and their parental neonatal fibroblast cell line; an isogenic set of 1 NT-ESC line, 6 iPSC lines and their parental adult fibroblast cell line (derived from a type 1 diabetic subject); as well as 7 control embryonic stem cell (ESC) lines.