Project description:Spinal Muscular Atrophy (SMA) is an autosomal recessive motor neuron disease and is the second most common genetic disorder leading to death in childhood. Motoneurons derived from induced pluripotent stem cells (iPSC) obtained by reprogramming SMA patient and his healthy father fibroblasts, and genetically corrected SMA-iPSC obtained converting SMN2 into SMN1 with target gene correction (TGC), were used to study gene expression and splicing events linked to pathogenetic mechanisms. Microarray technology was used to assess the global gene expression profile as well as splicing events of iPS-derived motorneurons from SMA patient, unaffected father and TGC-treated cells.
Project description:Spinal Muscular Atrophy (SMA) is an autosomal recessive motor neuron disease and is the second most common genetic disorder leading to death in childhood. Motoneurons derived from induced pluripotent stem cells (iPSC) obtained by reprogramming SMA patient and his healthy father fibroblasts, and genetically corrected SMA-iPSC obtained converting SMN2 into SMN1 with target gene correction (TGC), were used to study gene expression and splicing events linked to pathogenetic mechanisms. Microarray technology was used to assess the global gene expression profile as well as splicing events of iPS-derived motorneurons from SMA patient, unaffected father and TGC-treated cells. The microarray data derived from three different groups: SMA patient, healty father and treated SMA patient's cells. Each population consists of three RNA profiling cell samples.
Project description:Spinal Muscular Atrophy (SMA) is an autosomal recessive motor neuron disease and is the second most common genetic disorder leading to death in childhood. Motoneurons derived from induced pluripotent stem cells (iPS cells) obtained by reprogramming SMA patient and his healthy father fibroblasts, and genetically corrected SMA-iPSC obtained converting SMN2 into SMN1 with target gene correction (TGC), were used to study gene expression and splicing events linked to pathogenetic mechanisms. Microarray technology was used to assess global gene expression profiles of iPSC from SMA patient, unaffected father and iPS 19.9 (Prof. J. Thomson's lab) compared to transcriptomic data obtained by corresponding fibroblasts. The microarray data derived from three different individuals: SMA patient, healthy father and control iPS cells (19.9). We analyzed iPSC from SMA patient (n=2), iPS- from healthy father (n=1) and iPS-19.9 from Prof. Thomson's lab (n=3). The expression profile was compared to SMA patient's fibroblasts (n=2) and healthy father's fibroblasts (n=1)
Project description:Spinal Muscular Atrophy (SMA) is an autosomal recessive motor neuron disease and is the second most common genetic disorder leading to death in childhood. Motoneurons derived from induced pluripotent stem cells (iPS cells) obtained by reprogramming SMA patient and his healthy father fibroblasts, and genetically corrected SMA-iPSC obtained converting SMN2 into SMN1 with target gene correction (TGC), were used to study gene expression and splicing events linked to pathogenetic mechanisms. Microarray technology was used to assess global gene expression profiles of iPSC from SMA patient, unaffected father and iPS 19.9 (Prof. J. Thomson's lab) compared to transcriptomic data obtained by corresponding fibroblasts.
Project description:Global gene expression profiles of iPSC from SMA patient, unaffected father and iPS 19.9 compared to transcriptomic data obtained by corresponding fibroblasts
Project description:Spinal muscular atrophy (SMA) is one of the most common inherited forms of neurological disease leading to infant mortality. Patients exhibit selective loss of lower motor neurons resulting in muscle weakness, paralysis, and often death. Although patient fibroblasts have been used extensively to study SMA, motor neurons have a unique anatomy and physiology which may underlie their vulnerability to the disease process. Here we report the generation of induced pluripotent stem (iPS) cells from skin fibroblast samples taken from a child with SMA. These cells expanded robustly in culture, maintained the disease genotype, and generated motor neurons that showed selective deficits compared to those derived from the childâs unaffected mother. This is the first study to show human iPS cells can be used to model the specific pathology seen in a genetically inherited disease. As such, it represents a promising resource to study disease mechanisms, screen novel drug compounds, and develop new therapies. Experiment Overall Design: A total of 10 samples were hybridized to the human genome U133 Plus 2.0 GeneChip arrays carrying 54,675 probe sets (Affimetrix). Experiment Overall Design: H1L, H7, H9, H13B, and H14A embryonic stem cells are controls for the iPS cells Experiment Overall Design: iPS(SMA) 3.5 and iPS(SMA)3.6 are from the patient. The clone iPS(SMA) 4.2. is from the parent.
Project description:Spinal muscular atrophy (SMA) is one of the most common inherited forms of neurological disease leading to infant mortality. Patients exhibit selective loss of lower motor neurons resulting in muscle weakness, paralysis, and often death. Although patient fibroblasts have been used extensively to study SMA, motor neurons have a unique anatomy and physiology which may underlie their vulnerability to the disease process. Here we report the generation of induced pluripotent stem (iPS) cells from skin fibroblast samples taken from a child with SMA. These cells expanded robustly in culture, maintained the disease genotype, and generated motor neurons that showed selective deficits compared to those derived from the child’s unaffected mother. This is the first study to show human iPS cells can be used to model the specific pathology seen in a genetically inherited disease. As such, it represents a promising resource to study disease mechanisms, screen novel drug compounds, and develop new therapies. Keywords: Affimetrix global gene expression for comparison on all 10 samples
Project description:We used Affymetrix exon arrays to identify potential changes in alternative splicing between mice affect with spinal muscular atropy (SMA) and their unaffected littermates. Keywords: disease state analysis
Project description:Skin biopsies were obtained from a patient with Mitchell-Riley syndrome and her unaffected father. The patient suffered neonatal diabetes, anaemia, intrauterine growth restriction, pancreatic hypoplasia and duodenal atresia, in common with other Mitchell-Riley syndrome patients. The disease was found to be caused by a homozygous frame-shift mutation (c.1129C>T) in the RFX6 gene that leads to a premature stop codon (p.Arg377Ter), of which her father is a carrier. Fibroblasts from the biopsies were reprogrammed to generate human induced pluripotent stem cell (hiPSC) lines: two from the patient (MRS2-6 & MRS2-10) and two from the father (F14 & F18). To assess the effects of the mutant RFX6 allele on pancreas formation, these iPSC were differentiated into PDX1+ pancreatic endoderm and samples harvested for RNA isolation and whole transcriptome analysis. The number of biological replicates (independent differentiation experiments) carried out for each cell line are as follows: F14 (2), F18 (2), MRS2-6 (1), MRS2-10 (2). Two technical replicates were sequenced for each independent experiment.
Project description:The minor spliceosome is evolutionarily conserved in higher eukaryotes, but its biological significance remains poorly understood. Here, by precise CRISPR/Cas9-mediated disruption of the U12 and U6atac snRNAs, we report that a defective minor spliceosome is responsible for spinal muscular atrophy (SMA) associated phenotypes in Drosophila. Using a newly developed bioinformatic approach, we identified a large set of minor spliceosome-sensitive splicing events and demonstrate that three sensitive intron-containing neural genes, Pcyt2, Zmynd10, and Fas3, directly contribute to disease development as evidenced by the ability of their cDNAs to rescue the SMA-associated phenotypes in muscle development, neuromuscular junctions, and locomotion. Interestingly, many splice sites in sensitive introns are recognizable by both minor and major spliceosomes, suggesting a new mechanism of splicing regulation through competition between minor and major spliceosomes. These findings reveal a vital contribution of the minor spliceosome to SMA and to regulated splicing in animals.