Project description:This SuperSeries is composed of the following subset Series: GSE26393: Expression data of P4 stage hair follicle early bulge and non-bulge ORS cells GSE26394: Gene Expression data of P4 stage hair follicle ORS cells from DTG (K14-rtTA,TRE-miR-125b) and control littermates GSE26395: miRNA Expression data of P4 stage hair follicle ORS cells from DTG (K14-rtTA,TRE-miR-125b) and control littermates Refer to individual Series
Project description:Increasing evidence suggests that microRNAs may play important roles in regulating self-renewal and differentiation in mammalian stem cells (SCs). Here, we explore this issue in skin. We first characterize microRNA expression profiles of skin SCs versus their committed proliferative progenies and identify a microRNA subset associating with “stemness”. Of these, miR-125b is dramatically downregulated in early SC-progeny. We engineer an inducible mice system and show that when miR-125b is sustained in SC-progenies, tissue balance is reversibly skewed towards stemness at the expense of epidermal, oil-gland and HF differentiation. Using gain-and-loss of function in vitro, we further implicate miR-125b as a repressor of SC differentiation. In vivo, transcripts repressed upon miR-125b induction are enriched >700% for predicted miR-125b targets normally downregulated upon SC-lineage commitment. We verify some of these miR-125b targets, and show that Blimp1 and VDR in particular can account for many tissue imbalances we see when miR-125b is deregulated. We used microarrays to compare the global gene expression profile of P4 stage hair follicle ORS cells from DTG (K14-rtTA,TRE-miR-125b) and control littermates. Hair follicle cells were isolated from P4 Backskin of K14-RFP/Sox9-EGFP double transgenic mice as following: interfollicular epidermis sheet was pealed from hair follicle & dermis after dispase treatment. The hair follicle & dermis were first digested by collagenase (Sigma). Intact hair follicles were separated from dermal cells by low speed spinning (20g). The hair follicles were then digested by Trypsin and filtered by 40 µm cell strainers. The isolated hair follicle cells were FACS sorted. Dead cells and large differentiated cells were excluded based on DAPI and side scattering. Early bulge cells were gated as GFPHi,RFPHi. Non-bulge ORS cells were gated as GFP-, RFPHi.
Project description:Increasing evidence suggests that microRNAs may play important roles in regulating self-renewal and differentiation in mammalian stem cells (SCs). Here, we explore this issue in skin. We first characterize microRNA expression profiles of skin SCs versus their committed proliferative progenies and identify a microRNA subset associating with “stemness”. Of these, miR-125b is dramatically downregulated in early SC-progeny. We engineer an inducible mice system and show that when miR-125b is sustained in SC-progenies, tissue balance is reversibly skewed towards stemness at the expense of epidermal, oil-gland and HF differentiation. Using gain-and-loss of function in vitro, we further implicate miR-125b as a repressor of SC differentiation. In vivo, transcripts repressed upon miR-125b induction are enriched >700% for predicted miR-125b targets normally downregulated upon SC-lineage commitment. We verify some of these miR-125b targets, and show that Blimp1 and VDR in particular can account for many tissue imbalances we see when miR-125b is deregulated. We used microarrays to compare the global gene expression profile of early bulge stem cells and non bulge ORS cells. Hair follicle cells were isolated from P4 Backskin of K14-RFP/Sox9-EGFP double transgenic mice as following: interfollicular epidermis sheet was pealed from hair follicle & dermis after dispase treatment. The hair follicle & dermis were first digested by collagenase (Sigma). Intact hair follicles were separated from dermal cells by low speed spinning (20g). The hair follicles were then digested by Trypsin and filtered by 40 µm cell strainers. The isolated hair follicle cells were FACS sorted. Dead cells and large differentiated cells were excluded based on DAPI and side scattering. Early bulge cells were gated as GFPHi,RFPHi. Non-bulge ORS cells were gated as GFP-, RFPHi.
Project description:Mouse hair follicles undergo synchronized cycles. Cyclical regeneration and hair growth is fueled by stem cells (SCs). Following hair regeneration, SCs within the bulge and its vicinity (upper ORS which becomes the bulge for the next cycle) briefly self-renew to replenish expended SCs and ensure long-term tissue regeneration. We used microarrays to detect the relative levels of global gene expression influenced by transcription factor Tbx1 in order to gain insight into how Tbx1 is invovled in regulating hair follicle SC self-renewal and long-term regeneration. Fourty eight hours after deplicaiton induced hair regeneration, hair follicle SCs were FACS-purified for RNA extraction and hybridization on Affymetrix microarrays. To obtain homogeneous populations of expression profiles, we applied FASC technique to purify SC according to their cell surface markers.
Project description:Mouse hair follicles undergo synchronized cycles. Cyclical regeneration and hair growth is fueled by stem cells (SCs). Following hair regeneration, SCs within the bulge and its vicinity (upper ORS which becomes the bulge for the next cycle) briefly self-renew to replenish expended SCs and ensure long-term tissue regeneration. We used microarrays to detect the relative levels of global gene expression influenced by transcription factor Tbx1 in order to gain insight into how Tbx1 is invovled in regulating hair follicle SC self-renewal and long-term regeneration.
Project description:Increasing evidence suggests that microRNAs may play important roles in regulating self-renewal and differentiation in mammalian stem cells (SCs). Here, we explore this issue in skin. We first characterize microRNA expression profiles of skin SCs versus their committed proliferative progenies and identify a microRNA subset associating with “stemness”. Of these, miR-125b is dramatically downregulated in early SC-progeny. We engineer an inducible mice system and show that when miR-125b is sustained in SC-progenies, tissue balance is reversibly skewed towards stemness at the expense of epidermal, oil-gland and HF differentiation. Using gain-and-loss of function in vitro, we further implicate miR-125b as a repressor of SC differentiation. In vivo, transcripts repressed upon miR-125b induction are enriched >700% for predicted miR-125b targets normally downregulated upon SC-lineage commitment. We verify some of these miR-125b targets, and show that Blimp1 and VDR in particular can account for many tissue imbalances we see when miR-125b is deregulated. We used microarrays to compare the global miRNA expression profile of P4 stage hair follicle ORS cells from DTG (K14-rtTA,TRE-miR-125b) and control littermates. Hair follicle cells were isolated from P4 Backskin (Dox since P3 for 24hrs) of DTG (K14-rtTA/TRE-miR-125b/K14-H2BGFP), TRE (TRE-miR-125b/K14-H2BGFP), KrtA (K14-rtTA/K14-H2BGFP) as following: interfollicular epidermis sheet was pealed from hair follicle & dermis after dispase treatment.The hair follicle & dermis were first digested by collagenase (Sigma). Intact hair follicles were separated from dermal cells by low speed spinning (20g). The hair follicles were then digested by Trypsin and filtered by 40 µm cell strainers. The isolated hair follicle cells were FACS sorted. During FACS, cells were first gated against CD34 (endothelial cells), CD45 (immune cells), CD114 (melanocytes) and DAPI (dead cells). ORS cells were sorted from the remaining cells as α6HiGFPHi.
Project description:The human hair follicle bulge is an important niche for keratinocyte stem cells (KSC). Elucidation of human bulge cell biology could be facilitated by analysis of global gene expression profiles and identification of unique cell surface markers. The lack of distinctive bulge morphology in human hair follicles has hampered studies of bulge cells and KSC. In this study, we determined the distribution of label-retaining cells to carefully define the human anagen bulge. Using navigated-laser capture microdissection, bulge cells and outer root sheath cells from other follicle regions were obtained and analyzed with cDNA microarrays. Gene transcripts encoding inhibitors of WNT and Activin/BMP signaling were over-represented in the bulge while genes responsible for cell proliferation were under-represented, consistent with quiescent non-cycling KSC in anagen follicles. Positive markers for bulge cells included CD200, PHLDA1, follistatin, and frizzled homolog 1 while CD24, 34, 71 and 146 were preferentially expressed by non-bulge keratinocytes. Importantly, CD200+ cells (CD200hi24lo34lo71lo146lo) obtained from hair follicle suspensions demonstrated high colony forming efficiency in clonogenic assays, indicating successful enrichment of living human bulge stem cells. Keywords: Affymetrix micrarray analysis of human hair follicles
Project description:The human hair follicle bulge is an important niche for keratinocyte stem cells (KSCs). Elucidation of human bulge cell biology could be facilitated by analysis of global gene expression profiles and identification of unique cell-surface markers. The lack of distinctive bulge morphology in human hair follicles has hampered studies of bulge cells and KSCs. In this study, we determined the distribution of label-retaining cells to define the human anagen bulge. Using navigated laser capture microdissection, bulge cells and outer root sheath cells from other follicle regions were obtained and analyzed with cDNA microarrays. Gene transcripts encoding inhibitors of WNT and activin/bone morphogenic protein signaling were overrepresented in the bulge, while genes responsible for cell proliferation were underrepresented, consistent with the existence of quiescent noncycling KSCs in anagen follicles. Positive markers for bulge cells included CD200, PHLDA1, follistatin, and frizzled homolog 1, while CD24, CD34, CD71, and CD146 were preferentially expressed by non-bulge keratinocytes. Importantly, CD200+ cells (CD200hiCD24loCD34loCD71loCD146lo) obtained from hair follicle suspensions demonstrated high colony-forming efficiency in clonogenic assays, indicating successful enrichment of living human bulge stem cells. The stem cell behavior of enriched bulge cells and their utility for gene therapy and hair regeneration will need to be assessed in in vivo assays.