Project description:Background: Spina bifida is one of the most common and life threatening human congenital defects. Despite considerable effort and investigations, the causes and mechanisms underlying this malformation remain poorly characterized. In order to better understand pathogenesis of this abnormality, we conducted a microarray study to compare gene expression profiles between two mouse models, CLX-Splotch and Fkbp8Gt(neo), that both have spina bifida. Results: To compare the gene expression profiles in these two mouse models we performed microarray analysis using Mouse Whole Genome CodeLink Bioarray. We compared the level of gene expression between wildtype and homozygous mutant embryos in Fkbp8Gt(neo) and CXL-Splotch separately. A total of 54 genes were determined to be differentially expressed (25 down, 29 up) in the posterior neural tube of Fkbp8Gt(neo) mice embryos; while 73 genes were differentially expressed (56 down, 17 up) in the CXL-Splotch mouse. The only two genes that showed decreased expression in both mutants were v-ski sarcoma viral oncogene homolog (Ski) and Zic1, a transcription factor member of the zinc finger family. Interestingly, when Gene Ontology (GO) analysis was performed on all of the differentially expressed genes, there was a striking enrichment of genes associated with mesoderm development and central nervous system development in CLX-Splotch, whereas in Fkbp8Gt(neo) genes involved in dorsal/ventral pattern formation, cell fate specification, and positive regulation of cell differentiation were distinguished. This SuperSeries is composed of the following subset Series: GSE25974: Gene expression-based analysis of neural tube closure for the posterior neuropore of Fkbp8 embryos at E9.5 GSE25975: Gene expression-based analysis of neural tube closure for the posterior neuropore of Splotch embryos at E9.5
Project description:At an incidence of approximately 1/1000 births, neural tube defects (NTDs) comprise one of the most common and devastating congenital disorders. In an attempt to enhance and expand our understanding of neural tube closure, we undertook a high-throughput gene expression analysis of the neural tube as it was forming in the mouse embryo. Open and closed sections of the developing neural tube were micro-dissected from mouse embryos, and hybridized to Affymetrix mouse expression arrays. Clustering of genes differentially regulated in open and closed sections of the developing neural tube highlighted molecular processes previously recognized to be involved in neural tube closure and neurogenesis. Analysis of the genes in these categories identified potential candidates underlying neural tube closure. In addition, we identified approximately 25 novel genes, of unknown function, that were significantly up-regulated in the closed neural tube. Based on their expression patterns in the developing neural tube, five novel genes are proposed as interesting candidates for involvement in neurogenesis. The high-throughput expression analysis of the neural tube as it forms allows for better characterization of pathways involved in neural tube closure and neurogenesis, and hopefully will strengthen the foundation for further research along the pathways dictating neural tube development. Embryos were dissected at days E8.5 and E9.5, and the neuroepithelium/ neural tube were mechanically detached from underlying tissues, and then separated into two regions: 1) M-bM-^@M-^\open neuroepitheliumM-bM-^@M-^]: neuroepithelial tissue caudal to the open/closed junction, and 2) M-bM-^@M-^\closed neural tubeM-bM-^@M-^], extending from a somiteM-bM-^@M-^Ys breadth rostral to the open/closed junction, up to the level of the fifth- or sixth-to-last somite. Samples consisted of biological triplicates of RNA extract from the above tissues (pooled by litter, and representing a total of 111 embryos): E8.5 open neuroepithelium, E8.5 closed neural tube, E9.5 open neuroepithelium, and E9.5 closed neural tube. Thus, a total of 12 samples (representing 111 embryos) were hybridized to the GeneChip Mouse Genome 430 2.0 Array (Affymetrix Inc., Santa Clara, CA, USA). One of the samples (06, closed E8.5) deviated significantly from the others in quality assessment and was therefore removed from subsequent analysis and not submitted to GEO.
Project description:single-cell sequencing of the mouse cranial region at E8.25 (the start of neural tube closure, at E9.5 (the end of neural tube closure, and of a miR-302 knockout embryo at E9.5 (example of neural tube closure defrect).
Project description:Maternal diabetes is a teratogen that can lead to neural tube closure defects in the offspring. We therefore sought to compare gene expression profiles at the site of neural tube closure between stage-matched embryos from normal dams, and embryos from diabetic dams. Neurulation-stage mouse embryos at 8.5 days of gestation were used to prepare neural tissue at the anterior aspect of neural tube closure site 1. Tissue was procured from the open neural tube immediately anterior of the closure site, and from the closed neural tube immediately posterior to the closure site by laser microdissection. For each sample, 10 sections were pooled, total RNA was extracted, and 7 ng of total RNA were used for expression profiling by Tag sequencing using an Applied Biosystems SolidSAGE kit for library construction, and an AB SOLiD 5500 XL instrument for sequencing. Sequence reads were mapped to RefSeq RNA, and count data per gene were obtained using a modified version of the Applied Biosystems SOLiDâ?¢ SAGEâ?¢ Analysis Software. diabetic dam - closed neural tube // diabetic dam - open neural tube // normal dam - closed neural tube // normal dam - open neural tube
Project description:Single-cell mRNA sequencing was overlaid with single-cell ATAC sequencing of the mouse E9.5 cranial region for both wildtype and miR-302 knockout embryos, an established example of a neural tube closure defect. The goals of this study were to compare changes in gene expression and chromatin accessibility upon loss of a stem cell miRNA and neural tube closure defect.
Project description:Maternal diabetes is a teratogen that can lead to neural tube closure defects in the offspring. We therefore sought to compare gene expression profiles at the site of neural tube closure between stage-matched embryos from normal dams, and embryos from diabetic dams. Neurulation-stage mouse embryos at 8.5 days of gestation were used to prepare neural tissue at the anterior aspect of neural tube closure site 1. Tissue was procured from the open neural tube immediately anterior of the closure site, and from the closed neural tube immediately posterior to the closure site by laser microdissection. For each sample, 10 sections were pooled, total RNA was extracted, and 7 ng of total RNA were used for expression profiling by Tag sequencing using an Applied Biosystems SolidSAGE kit for library construction, and an AB SOLiD 5500 XL instrument for sequencing. Sequence reads were mapped to RefSeq RNA, and count data per gene were obtained using a modified version of the Applied Biosystems SOLiD™ SAGE™ Analysis Software.
Project description:At an incidence of approximately 1/1000 births, neural tube defects (NTDs) comprise one of the most common and devastating congenital disorders. In an attempt to enhance and expand our understanding of neural tube closure, we undertook a high-throughput gene expression analysis of the neural tube as it was forming in the mouse embryo. Open and closed sections of the developing neural tube were micro-dissected from mouse embryos, and hybridized to Affymetrix mouse expression arrays. Clustering of genes differentially regulated in open and closed sections of the developing neural tube highlighted molecular processes previously recognized to be involved in neural tube closure and neurogenesis. Analysis of the genes in these categories identified potential candidates underlying neural tube closure. In addition, we identified approximately 25 novel genes, of unknown function, that were significantly up-regulated in the closed neural tube. Based on their expression patterns in the developing neural tube, five novel genes are proposed as interesting candidates for involvement in neurogenesis. The high-throughput expression analysis of the neural tube as it forms allows for better characterization of pathways involved in neural tube closure and neurogenesis, and hopefully will strengthen the foundation for further research along the pathways dictating neural tube development.