Project description:In this study, we combined metabolic reconstruction, growth assays, metabolome and transcriptome analyses to obtain a global view of the sulfur metabolic network and of the response to sulfur availability in Brevibacterium aurantiacum. In agreement with the growth of B. aurantiacum in the presence of sulfate and cystine, the metabolic reconstruction showed the presence of a sulfate assimilation pathway and of thiolation pathways that produce cysteine (cysE and cysK) or homocysteine (metX and metY) from sulfide, of at least one gene of the transsulfuration pathway (aecD) and of genes encoding three MetE-type methionine synthases. We also compared the expression profiles of B. aurantiacum ATCC9175 during sulfur starvation and in the presence of sulfate, cystine or methionine plus cystine. In sulfur starvation, 690 genes including 21 genes involved in sulfur metabolism and 29 genes encoding amino acids and peptide transporters were differentially expressed. We also investigated changes in pools of sulfur-containing metabolites and in expression profiles after growth in the presence of sulfate, cystine or methionine plus cystine. The expression of genes involved in sulfate assimilation and cysteine synthesis was repressed in presence of cysteine, while the expression of metX, metY, metE1, metE2 and BL613 encoding a probable cystathionine-γ-synthase decreased in the presence of methionine. We identified three ABC transporters: two stronger transcribed during cysteine limitation and one during methionine depletion. Finally, the expression of genes encoding a methionine γ-lyase, BL929, and a methionine transporter (metPS) was induced in the presence of methionine, in conjunction with a significant increase of volatile sulfur compounds production. Refer to individual Series. This SuperSeries is composed of the following subset Series: GSE25418: BA-Methionine plus Cystine vs Cystine GSE25419: BA-Sulfate vs Cystine GSE25420: BA-Methionine plus Cystine vs Sulfate GSE25421: BA-Sulfate vs Sulfate starvation
Project description:In this study, we combined metabolic reconstruction, growth assays, metabolome and transcriptome analyses to obtain a global view of the sulfur metabolic network and of the response to sulfur availability in Brevibacterium aurantiacum. In agreement with the growth of B. aurantiacum in the presence of sulfate and cystine, the metabolic reconstruction showed the presence of a sulfate assimilation pathway and of thiolation pathways that produce cysteine (cysE and cysK) or homocysteine (metX and metY) from sulfide, of at least one gene of the transsulfuration pathway (aecD) and of genes encoding three MetE-type methionine synthases. We also compared the expression profiles of B. aurantiacum ATCC9175 during sulfur starvation and in the presence of sulfate, cystine or methionine plus cystine. In sulfur starvation, 690 genes including 21 genes involved in sulfur metabolism and 29 genes encoding amino acids and peptide transporters were differentially expressed. We also investigated changes in pools of sulfur-containing metabolites and in expression profiles after growth in the presence of sulfate, cystine or methionine plus cystine. The expression of genes involved in sulfate assimilation and cysteine synthesis was repressed in presence of cysteine, while the expression of metX, metY, metE1, metE2 and BL613 encoding a probable cystathionine-γ-synthase decreased in the presence of methionine. We identified three ABC transporters: two stronger transcribed during cysteine limitation and one during methionine depletion. Finally, the expression of genes encoding a methionine γ-lyase, BL929, and a methionine transporter (metPS) was induced in the presence of methionine, in conjunction with a significant increase of volatile sulfur compounds production. This SuperSeries is composed of the SubSeries listed below.
Project description:In this study, we combined metabolic reconstruction, growth assays, and metabolome and transcriptome analyses to obtain a global view of the sulfur metabolic network and of the response to sulfur availability in Brevibacterium aurantiacum. In agreement with the growth of B. aurantiacum in the presence of sulfate and cystine, the metabolic reconstruction showed the presence of a sulfate assimilation pathway, thiolation pathways that produce cysteine (cysE and cysK) or homocysteine (metX and metY) from sulfide, at least one gene of the transsulfuration pathway (aecD), and genes encoding three MetE-type methionine synthases. We also compared the expression profiles of B. aurantiacum ATCC 9175 during sulfur starvation or in the presence of sulfate. Under sulfur starvation, 690 genes, including 21 genes involved in sulfur metabolism and 29 genes encoding amino acids and peptide transporters, were differentially expressed. We also investigated changes in pools of sulfur-containing metabolites and in expression profiles after growth in the presence of sulfate, cystine, or methionine plus cystine. The expression of genes involved in sulfate assimilation and cysteine synthesis was repressed in the presence of cystine, whereas the expression of metX, metY, metE1, metE2, and BL613, encoding a probable cystathionine-γ-synthase, decreased in the presence of methionine. We identified three ABC transporters: two operons encoding transporters were transcribed more strongly during cysteine limitation, and one was transcribed more strongly during methionine depletion. Finally, the expression of genes encoding a methionine γ-lyase (BL929) and a methionine transporter (metPS) was induced in the presence of methionine in conjunction with a significant increase in volatile sulfur compound production.
Project description:Brevibacterium aurantiacum is an actinobacterium that confers key organoleptic properties to washed-rind cheeses during the ripening process. Although this industrially relevant species has been gaining an increasing attention in the past years, its genome plasticity is still understudied due to the unavailability of complete genomic sequences. To add insights on the mobilome of this group, we sequenced the complete genomes of five dairy Brevibacterium strains and one non-dairy strain using PacBio RSII. We performed phylogenetic and pan-genome analyses, including comparisons with other publicly available Brevibacterium genomic sequences. Our phylogenetic analysis revealed that these five dairy strains, previously identified as Brevibacterium linens, belong instead to the B. aurantiacum species. A high number of transposases and integrases were observed in the Brevibacterium spp. strains. In addition, we identified 14 and 12 new insertion sequences (IS) in B. aurantiacum and B. linens genomes, respectively. Several stretches of homologous DNA sequences were also found between B. aurantiacum and other cheese rind actinobacteria, suggesting horizontal gene transfer (HGT). A HGT region from an iRon Uptake/Siderophore Transport Island (RUSTI) and an iron uptake composite transposon were found in five B. aurantiacum genomes. These findings suggest that low iron availability in milk is a driving force in the adaptation of this bacterial species to this niche. Moreover, the exchange of iron uptake systems suggests cooperative evolution between cheese rind actinobacteria. We also demonstrated that the integrative and conjugative element BreLI (Brevibacterium Lanthipeptide Island) can excise from B. aurantiacum SMQ-1417 chromosome. Our comparative genomic analysis suggests that mobile genetic elements played an important role into the adaptation of B. aurantiacum to cheese ecosystems.