Project description:This SuperSeries is composed of the following subset Series: GSE25083: Global hypomethylation identifies loci targeted for hypermethylation in head and neck cancer: normal head and neck tissue GSE25089: Global hypomethylation identifies loci targeted for hypermethylation in head and neck cancer: HNSCC GSE25091: Global hypomethylation identifies loci targeted for hypermethylation in head and neck cancer: blood controls Refer to individual Series
Project description:Sage performed on microdissection of Head and Neck tumor, and Head and Neck normal tissue comparative analysis of gene expression profiles of head and neck squamous cell carcinoma and Head and Neck normal tissue
Project description:Microarrays were used to examine gene expression differences between human head and neck squamous cell carcinoma cell lines (FaDu, UTSCC8, UTSCC42a) grown in culture in comparison to a normal oral epithelial cell line. Gene expression data was integrated with global protein expression of head and neck squamous cell carcinoma cell lines and conditioned media to identify secreted protein markers up-regulated at the mRNA level in cancer cells versus the normal cell line. Total RNA obtained from head and neck squamous cell carcinoma cell lines and a normal oral epithelial cell line
Project description:Microarrays were used to examine gene expression differences between human head and neck squamous cell carcinoma cell lines (FaDu, UTSCC8, UTSCC42a) grown in culture in comparison to a normal oral epithelial cell line. Gene expression data was integrated with global protein expression of head and neck squamous cell carcinoma cell lines and conditioned media to identify secreted protein markers up-regulated at the mRNA level in cancer cells versus the normal cell line.
Project description:Rap1GAP is a critical tumor suppressor gene that is down-regulated in multiple aggressive cancers such as head and neck squamous cell carcinoma, melanoma and pancreatic cancer. However, the mechanistic basis of rap1GAP down-regulation in cancers is poorly understood. By employing an integrative approach, we demonstrate polycomb-mediated repression of rap1GAP that involves EZH2, a histone methyltransferase in head and neck cancers. We further concomitant down-regulation of rap1GAP in head and neck cancers. EZH2 represses rap1GAP by facilitating the trimethylation of H3K27, a mark of gene repression, and also hypermethylation of rap1GAP promoter. These results provide a conceptual framework involving a microRNA-oncogene-tumor suppressor axis to understand head and neck cancer progression.
Project description:Rap1GAP is a critical tumor suppressor gene that is down-regulated in multiple aggressive cancers such as head and neck squamous cell carcinoma, melanoma and pancreatic cancer. However, the mechanistic basis of rap1GAP down-regulation in cancers is poorly understood. By employing an integrative approach, we demonstrate polycomb-mediated repression of rap1GAP that involves EZH2, a histone methyltransferase in head and neck cancers. We further concomitant down-regulation of rap1GAP in head and neck cancers. EZH2 represses rap1GAP by facilitating the trimethylation of H3K27, a mark of gene repression, and also hypermethylation of rap1GAP promoter. These results provide a conceptual framework involving a microRNA-oncogene-tumor suppressor axis to understand head and neck cancer progression. OSCC3-siRNA Non-Targeting Vs. siRNA EZH2 with dye-swap, HOK-Adeno CMV Vs. Adeno EZH2.