Project description:Molecular basis of transition to addiction in vulnerable individuals is largely unknown. We hypothesized that human susceptibility genes can be identified on the basis of conserved molecular mechanisms in rodent brains. We used a short-term cocaine-dependent conditioned place preference (CPP) to identify genetic hallmarks of early steps of reward memory in basal ganglia including accumbens nucleus (NAc), globus pallidus (GP) and subthalamic nucleus (STN). Using genome-wide microarray analysis and CPP as a quantitative trait, we found that synaptic plasticity-related genes are deregulated in these three structures. A significant enrichment in bona fide transcripts involved in dendritic spine local translation was evidenced. mGluR5 is transcriptionally deregulated in Acc and GP of cocaine-treated animals. Grin3a that encodes a NMDA receptor subunit involved in Ca++ permeability is deregulated in NAc. Furthermore, Orexin/Hcrt transcript level is decreased in STN, a region known to be involved in discriminating addictive drugs and natural rewards. We also found that mGluR5 and Grin3a expression deregulation is sufficient to induce changes in synaptic plasticity-related genes. Altogether, these results suggest that a combined deregulation of mGluR5 and Grin3A pathway in NAc, mGluR5 in GP and orexin system in STN may generate an incentive memory contrasted between addictive drugs and natural rewards. Such pathways may include clusters of genes that are potential susceptibility genes for transition to addiction. Agilent Whole Mouse Genome oligomicroarrays (GEO accession no. GPL4134, Agilent Technologies, Palo Alto, CA) were used. They contain 60-mer DNA probes synthesized in situ in a 44k format. Four independent (globus pallidus from mouse treated with cocaine and having a low score of conditioned place preference compared to globus pallidus from mouse treated with saline solution) hybridizations were carried out for each group of biological conditions using exchanged dye-labeled RNA targets (i.e., Cy3 and Cy5 dyeswapping experiments).
Project description:Molecular basis of transition to addiction in vulnerable individuals is largely unknown. We hypothesized that human susceptibility genes can be identified on the basis of conserved molecular mechanisms in rodent brains. We used a short-term cocaine-dependent conditioned place preference (CPP) to identify genetic hallmarks of early steps of reward memory in basal ganglia including accumbens nucleus (NAc), globus pallidus (GP) and subthalamic nucleus (STN). Using genome-wide microarray analysis and CPP as a quantitative trait, we found that synaptic plasticity-related genes are deregulated in these three structures. A significant enrichment in bona fide transcripts involved in dendritic spine local translation was evidenced. mGluR5 is transcriptionally deregulated in Acc and GP of cocaine-treated animals. Grin3a that encodes a NMDA receptor subunit involved in Ca++ permeability is deregulated in NAc. Furthermore, Orexin/Hcrt transcript level is decreased in STN, a region known to be involved in discriminating addictive drugs and natural rewards. We also found that mGluR5 and Grin3a expression deregulation is sufficient to induce changes in synaptic plasticity-related genes. Altogether, these results suggest that a combined deregulation of mGluR5 and Grin3A pathway in NAc, mGluR5 in GP and orexin system in STN may generate an incentive memory contrasted between addictive drugs and natural rewards. Such pathways may include clusters of genes that are potential susceptibility genes for transition to addiction. Agilent Whole Mouse Genome oligomicroarrays (GEO accession no. GPL4134, Agilent Technologies, Palo Alto, CA) were used. They contain 60-mer DNA probes synthesized in situ in a 44k format. Four independent (globus pallidus from mouse treated with cocaine and having a high score of conditioned place preference compared to globus pallidus from mouse treated with saline solution) measurements were carried out for each group of biological conditions using exchanged dye-labeled RNA targets (i.e., Cy3 and Cy5 dyeswapping experiments).
Project description:Molecular basis of transition to addiction in vulnerable individuals is largely unknown. We hypothesized that human susceptibility genes can be identified on the basis of conserved molecular mechanisms in rodent brains. We used a short-term cocaine-dependent conditioned place preference (CPP) to identify genetic hallmarks of early steps of reward memory in basal ganglia including accumbens nucleus (NAc), globus pallidus (GP) and subthalamic nucleus (STN). Using genome-wide microarray analysis and CPP as a quantitative trait, we found that synaptic plasticity-related genes are deregulated in these three structures. A significant enrichment in bona fide transcripts involved in dendritic spine local translation was evidenced. mGluR5 is transcriptionally deregulated in Acc and GP of cocaine-treated animals. Grin3a that encodes a NMDA receptor subunit involved in Ca++ permeability is deregulated in NAc. Furthermore, Orexin/Hcrt transcript level is decreased in STN, a region known to be involved in discriminating addictive drugs and natural rewards. We also found that mGluR5 and Grin3a expression deregulation is sufficient to induce changes in synaptic plasticity-related genes. Altogether, these results suggest that a combined deregulation of mGluR5 and Grin3A pathway in NAc, mGluR5 in GP and orexin system in STN may generate an incentive memory contrasted between addictive drugs and natural rewards. Such pathways may include clusters of genes that are potential susceptibility genes for transition to addiction. Agilent Whole Mouse Genome oligomicroarrays (GEO accession no. GPL2872, Agilent Technologies, Palo Alto, CA) were used. They contain 60-mer DNA probes synthesized in situ in a 44k format. Of 44,290 spots, 2756 are controls. The remaining 41,534 spots represent 33,661 unique transcripts which correspond to 20,202 unique human genes. Five independent (five accumbens nuclei from mice treated with cocaine and having a low score of conditioned place preference compared to five accumbens nuclei from mice treated with saline solution) measurements were carried out for each group of biological conditions using exchanged dye-labeled RNA targets (i.e., Cy3 and Cy5 dyeswapping experiments).
Project description:Transcriptome of accumbens nuclei from mice having low scores of cocaine-dependent conditioned place preference
| PRJNA143037 | ENA
Project description:Transcriptomes of subthalamic nuclei, globus pallidus, and accumbens nuclei from mice with low and high scores of cocaine-dependent conditioned place preference
Project description:Reward-related memory is an important factor in cocaine seeking. One necessary signaling mechanism for long-term memory formation is the activation of poly(ADP-ribose) polymerase-1 (PARP-1), via poly(ADP-ribosyl)ation. We demonstrate herein that auto-poly(ADP-ribosyl)ation of activated PARP-1 was significantly pronounced during retrieval of cocaine-associated contextual memory, in the central amygdala (CeA) of rats expressing cocaine-conditioned place preference (CPP). Intra-CeA pharmacological and shRNA depletion of PARP-1 activity during cocaine-associated memory retrieval abolished CPP. In contrast, PARP-1 inhibition after memory retrieval did not affect CPP reconsolidation process and subsequent retrievals. Chromatin Immuoprecipitation (ChIP) sequencing revealed that PARP-1 binding in the CeA is highly enriched in genes involved in neuronal signaling. We identified amongst PARP targets in CeA a single gene, yet uncharacterized and encoding a putative transposase inhibitor, at which PARP-1 enrichment dramatically increases during cocaine-associated memory retrieval and positively correlates with CPP. Our findings have important implications for understanding drug-related behaviors, and suggest possible future therapeutic targets for drug abuse. 4 samples, each is pooled central amygdalae tissues collected from 2 rats. Rats were trained for cocaine-conditioned place-preference (CPP), tissues were harvested immediately following cocaine-CPP retrieval. Three groups of rats were used: high cocaine CPP, low cocaine CPP and control saline only trained rats.
Project description:Molecular basis of transition to addiction in vulnerable individuals is largely unknown. We hypothesized that human susceptibility genes can be identified on the basis of conserved molecular mechanisms in rodent brains. We used a short-term cocaine-dependent conditioned place preference (CPP) to identify genetic hallmarks of early steps of reward memory in basal ganglia including accumbens nucleus (NAc), globus pallidus (GP) and subthalamic nucleus (STN). Using genome-wide microarray analysis and CPP as a quantitative trait, we found that synaptic plasticity-related genes are deregulated in these three structures. A significant enrichment in bona fide transcripts involved in dendritic spine local translation was evidenced. mGluR5 is transcriptionally deregulated in Acc and GP of cocaine-treated animals. Grin3a that encodes a NMDA receptor subunit involved in Ca++ permeability is deregulated in NAc. Furthermore, Orexin/Hcrt transcript level is decreased in STN, a region known to be involved in discriminating addictive drugs and natural rewards. We also found that mGluR5 and Grin3a expression deregulation is sufficient to induce changes in synaptic plasticity-related genes. Altogether, these results suggest that a combined deregulation of mGluR5 and Grin3A pathway in NAc, mGluR5 in GP and orexin system in STN may generate an incentive memory contrasted between addictive drugs and natural rewards. Such pathways may include clusters of genes that are potential susceptibility genes for transition to addiction.
Project description:Molecular basis of transition to addiction in vulnerable individuals is largely unknown. We hypothesized that human susceptibility genes can be identified on the basis of conserved molecular mechanisms in rodent brains. We used a short-term cocaine-dependent conditioned place preference (CPP) to identify genetic hallmarks of early steps of reward memory in basal ganglia including accumbens nucleus (NAc), globus pallidus (GP) and subthalamic nucleus (STN). Using genome-wide microarray analysis and CPP as a quantitative trait, we found that synaptic plasticity-related genes are deregulated in these three structures. A significant enrichment in bona fide transcripts involved in dendritic spine local translation was evidenced. mGluR5 is transcriptionally deregulated in Acc and GP of cocaine-treated animals. Grin3a that encodes a NMDA receptor subunit involved in Ca++ permeability is deregulated in NAc. Furthermore, Orexin/Hcrt transcript level is decreased in STN, a region known to be involved in discriminating addictive drugs and natural rewards. We also found that mGluR5 and Grin3a expression deregulation is sufficient to induce changes in synaptic plasticity-related genes. Altogether, these results suggest that a combined deregulation of mGluR5 and Grin3A pathway in NAc, mGluR5 in GP and orexin system in STN may generate an incentive memory contrasted between addictive drugs and natural rewards. Such pathways may include clusters of genes that are potential susceptibility genes for transition to addiction.
Project description:Molecular basis of transition to addiction in vulnerable individuals is largely unknown. We hypothesized that human susceptibility genes can be identified on the basis of conserved molecular mechanisms in rodent brains. We used a short-term cocaine-dependent conditioned place preference (CPP) to identify genetic hallmarks of early steps of reward memory in basal ganglia including accumbens nucleus (NAc), globus pallidus (GP) and subthalamic nucleus (STN). Using genome-wide microarray analysis and CPP as a quantitative trait, we found that synaptic plasticity-related genes are deregulated in these three structures. A significant enrichment in bona fide transcripts involved in dendritic spine local translation was evidenced. mGluR5 is transcriptionally deregulated in Acc and GP of cocaine-treated animals. Grin3a that encodes a NMDA receptor subunit involved in Ca++ permeability is deregulated in NAc. Furthermore, Orexin/Hcrt transcript level is decreased in STN, a region known to be involved in discriminating addictive drugs and natural rewards. We also found that mGluR5 and Grin3a expression deregulation is sufficient to induce changes in synaptic plasticity-related genes. Altogether, these results suggest that a combined deregulation of mGluR5 and Grin3A pathway in NAc, mGluR5 in GP and orexin system in STN may generate an incentive memory contrasted between addictive drugs and natural rewards. Such pathways may include clusters of genes that are potential susceptibility genes for transition to addiction.