Project description:This SuperSeries is composed of the following subset Series: GSE28646: Gene expression profiling in A2780, CP70 and CP70 following Decitabine and/or PXD101 treatment GSE28647: Genome-wide methylation profiling identifies candidate DNA methylation drivers of acquired cisplatin resistance in ovarian cancer. Refer to individual Series
Project description:Multiple DNA methylation changes have been associated with the acquisition of drug resistance; however it remains uncertain how many of these changes may represent critical DNA methylation drivers of chemoresistance. Using gene expression profiling method on HGU133plus2 array, we identified a total of 1370 genes showing significant gene expression changes with 687 genes going up and 683 genes going down in the resistant (cp70) versus sensitive cell lines (A2780) by Rank Product (FDR<5%). Combining expression profiling with methylation profiling data we found out of 245 hypermethylated and down-regulated genes in the resistant cell line, 41 genes were up-regulated following Decitabine treatment alone, 45 genes up-regulated following combined treatment of Decitabine and PXD101, and only 10 genes up-regulated following PXD101 treatment alone. Altogether we found a small set of genes as being potential key drivers of chemoresistance and should be further evaluated as predictive biomarkers, both to existing chemotherapies, but also to epigenetic therapies used to modulate drug resistance. Gene expression profiling was obtained from A2780, and CP70 before and after Decitabine and/or PXD101 treatment. Each sample have biological triplicates. Using Rank Product package in R (version 2.10.1), differentially expressed genes with FDR<5% were identified.
Project description:Multiple DNA methylation changes have been associated with the acquisition of drug resistance; however it remains uncertain how many of these changes may represent critical DNA methylation drivers of chemoresistance. Using gene expression profiling method on HGU133plus2 array, we identified a total of 1370 genes showing significant gene expression changes with 687 genes going up and 683 genes going down in the resistant (cp70) versus sensitive cell lines (A2780) by Rank Product (FDR<5%). Combining expression profiling with methylation profiling data we found out of 245 hypermethylated and down-regulated genes in the resistant cell line, 41 genes were up-regulated following Decitabine treatment alone, 45 genes up-regulated following combined treatment of Decitabine and PXD101, and only 10 genes up-regulated following PXD101 treatment alone. Altogether we found a small set of genes as being potential key drivers of chemoresistance and should be further evaluated as predictive biomarkers, both to existing chemotherapies, but also to epigenetic therapies used to modulate drug resistance.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs. One-condition experment, gene expression of 3A6
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs.
Project description:Transcriptomic profiling was performed on six cell lines derived from infants with KMT2A-rearranged ALL following treatment with two hypomethylating drugs (azacitidine and decitabine) administered at low doses for 72 hours in vitro. We identified changes in gene expression following treatment with hypomethylating agents, with decitabine exerting a greater effect than azacitidine.