Project description:The goal of this study was to identify genes in C2C12 myoblasts whose expression was altered by overexpression of Smad3. Four total samples were analyzed. Two biological replicates were prepared from C2C12 cells infected with retroviral vector encoding wildtype Smad3 and exposed for 24 hours to 100 pM TGF-β. Two biological replicates were prepared from C2C12 cells infected with a control retrovirus that did not encode Smad3 (empty vector, EV) and exposed for 24 hours to 100pM TGF-β. To identify genes with altered expression between empty vector controls and cells overexpressing wild-type Smad3, we first pre-processed the four arrays using robust multiarray averaging as implemented in the R software package ‘xps’, version 1.10.2 (http://www.bioconductor.org/packages/release/bioc/html/xps.html). This preprocessing corrects for background noise and array effects, and aggregates probe data to 28,836 genes. Duplicates were averaged on the base-2 logarithm scale, and then we took differences between the averages to obtain logarithm-scale fold changes. Genes were selected which showed at least a two-fold change (raw scale) between wild-type and empty vector expressing cells. Due to the limited sample size, we did not apply any statistical tests to estimate false-discovery rate. This resulted in 79 genes that were at least two-fold higher in the wild-type Smad3-expressing C2C12 cells compared to empty vector cells and 25 genes that were at least two-fold lower in the wild-type Smad3-expressing cells than the in the empty vector cells.
Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.