Project description:Through substitution mapping studies, we previously identified that a <330kb region from a rat strain with no renal pathology (the Lewis rat), which when introgressed onto the genetic background of a rat with renal disease (the Dahl Salt-sensitive (S) rat), caused an increase rather than the expected decrease in proteinuria. The purpose of this study was to prioritize a candidate gene and further delineate the mechanism underlying the observed increased in proteinuria. A higher level of proteinuria independent of dietary salt was observed in the congenic rat at a very young age (50-52 day old). The critical congenic segment was further mapped to <42.5kb containing a single candidate gene, rififylin. Rififylin was expressed 1.59 fold higher in the congenic strain compared with S. Overexpression of rififylin is known to delay recycling of endosomes. Renal transcriptome analysis indicated that Atp1a1 one of the most highly differentially expressed genes. Atp1a1 was 5.33 fold higher in the congenic strain compared with S. The protein product of Atp1a1, the alpha subunit of Na+K+ATPase, was also significantly higher in the endosomes of proximal tubules from the congenic strain compared with S. To determine whether the higher amounts of this protein in the endosomes is due to a delay in recycling of endosomes caused by the overexpression of rififylin in the congenic strain, recycling of exogenously labeled-transferrin by single cell cultures of proximal tubules was monitored by confocal microscopy. Recycling of transferrin was significantly delayed in the congenic strain compared with S. These results suggest that impaired endosomal recycling in the proximal tubules from the congenic strain caused by the overexpression of rififylin is a novel molecular mechanism linked to the observed increase in proteinuria of the congenic strain.
Project description:Through substitution mapping studies, we previously identified that a <330kb region from a rat strain with no renal pathology (the Lewis rat), which when introgressed onto the genetic background of a rat with renal disease (the Dahl Salt-sensitive (S) rat), caused an increase rather than the expected decrease in proteinuria. The purpose of this study was to prioritize a candidate gene and further delineate the mechanism underlying the observed increased in proteinuria. A higher level of proteinuria independent of dietary salt was observed in the congenic rat at a very young age (50-52 day old). The critical congenic segment was further mapped to <42.5kb containing a single candidate gene, rififylin. Rififylin was expressed 1.59 fold higher in the congenic strain compared with S. Overexpression of rififylin is known to delay recycling of endosomes. Renal transcriptome analysis indicated that Atp1a1 one of the most highly differentially expressed genes. Atp1a1 was 5.33 fold higher in the congenic strain compared with S. The protein product of Atp1a1, the alpha subunit of Na+K+ATPase, was also significantly higher in the endosomes of proximal tubules from the congenic strain compared with S. To determine whether the higher amounts of this protein in the endosomes is due to a delay in recycling of endosomes caused by the overexpression of rififylin in the congenic strain, recycling of exogenously labeled-transferrin by single cell cultures of proximal tubules was monitored by confocal microscopy. Recycling of transferrin was significantly delayed in the congenic strain compared with S. These results suggest that impaired endosomal recycling in the proximal tubules from the congenic strain caused by the overexpression of rififylin is a novel molecular mechanism linked to the observed increase in proteinuria of the congenic strain. Three male S control and 3 male congenic S.LEW(10)x12x2x3x5 rats born on the same day were selected, weaned at 30 days of age, and caged with 1 congenic and 1 S rat per cage. They were raised on a low-salt (0.3%) diet (Harlan Teklad diet TD 7034; Harlan–Sprague-Dawley) and sacrificed at 53 days of age and total RNAs were isolated from the kidney. The isolated RNA from each animal was used for the cRNA preparation. cRNA was prepared and fragmented as suggested by Affymetrix technical manual, and simultaneously hybridized (15 µg adjusted cRNA for each chip) to Rat Expression Array 230 2.0 (3' IVT Expression Analysis). Statistical analyses of the microarray data were performed with BH adjustment using R statistical package (version 2.8.1).
Project description:Loss of the Sortilin-related receptor 1 (SORL1) gene seems to act as a causal event for Alzheimer’s disease (AD). Recent studies have established that loss of SORL1, as well as mutations in autosomal dominant AD genes APP and PSEN1/2, pathogenically converge by swelling early endosomes, AD’s cytopathological hallmark. Acting together with the retromer trafficking complex, SORL1 has been shown to regulate the recycling of the amyloid precursor protein (APP) out of the endosome, contributing to endosomal swelling and to APP misprocessing. We hypothesized that SORL1 plays a broader role in neuronal endosomal recycling and used human induced pluripotent stem cell derived neurons (hiPSC-Ns) to test this hypothesis. In SORL1 deficient (SORL1KO) cell lines, we map the trafficking of the glutamate receptor and the BDNF neurotrophic receptor, two kinds of transmembrane proteins that depend on endosomal recycling and that are linked to AD pathophysiology. We find that as with APP, SORL1 is required for efficient endosomal recycling of the glutamate receptor AMPA1 (GLUA1) and the BDNF receptor Tropomyosin-related kinase B (TRKB). Next, we used cell lines engineered to overexpress SORL1 and find that increased SORL1 expression enhances recycling for APP and GLUA1. Finally, we performed an unbiased transcriptomic screen of SORL1KO neurons and the data further support SORL1’s role in endosomal recycling. We observed altered expression networks that regulate cell surface trafficking and neurotrophic signaling. Collectively, and together with other recent observations, these findings suggest that SORL1 is a key and broad regulator of retromer-dependent endosomal recycling in neurons, a conclusion that has both pathogenic and therapeutic implications.
Project description:Dent disease has multiple defects attributed to proximal tubule malfunction including low molecular weight proteinuria, aminoaciduria, phosphaturia and glycosuria. In order to understand the changes in kidney function of the Clc5 transporter gene knockout mouse model of Dent disease, we examined gene expression profiles from proximal tubules of mouse kidneys. Overall 720 genes are expressed differentially in the proximal tubules of the Dent Clcn5 knockout mouse model compared to those of control wild type mice. The fingerprint of these gene changes may help us to understand the phenotype of Dent disease. Experiment Overall Design: Renal proximal tubules were dissected from wild type and Clcn5 knockout mice. Mice were anesthetized with halothane, the abdominal aorta of each animal was accessed and the left kidney was perfused with an ice-cold salt. Proximal tubule dissection was performed in an ice-cold salt solution. After dissection of approximately 80-100 segments of 2 mm in length per kidney, the RNA for 3-4 mice was combined to have enough RNA per chip. Experiment Overall Design: 3 microarrays each of wild type and knockout mouse proximal tubule were processed
Project description:Dent disease has multiple defects attributed to proximal tubule malfunction including low molecular weight proteinuria, aminoaciduria, phosphaturia and glycosuria. In order to understand the changes in kidney function of the Clc5 transporter gene knockout mouse model of Dent disease, we examined gene expression profiles from proximal tubules of mouse kidneys. Overall 720 genes are expressed differentially in the proximal tubules of the Dent Clcn5 knockout mouse model compared to those of control wild type mice. The fingerprint of these gene changes may help us to understand the phenotype of Dent disease. Keywords: gene knockout, mouse, Clcn5, Dent's disease
Project description:Few studies have assessed the patterns of parasite populations of rodents over a longitudinal gradient in Chile. In this work, the gastrointestinal helminthic fauna of invasive rodents in Chile was examined to assess the association between their presence/absence and abundance with latitude, host sex, and host body condition, and to assess the coexistence and correlation of the abundance between parasite species. Rodents were obtained from 20 localities between 33 and 43°S. Helminths were extracted from the gastrointestinal tract and identified morphologically. Overall, 13 helminth taxa were obtained. The most frequently identified parasite species was Heterakis spumosa, and the most abundant was Syphacia muris, while Physaloptera sp. was the most widely distributed. No locality presented with a coexistence that was different from that expected by chance, while the abundance of five helminthic species correlated with the abundance of another in at least one locality, most likely due to co-infection rather than interaction. Host sex was associated with parasite presence or abundance, and female sex-biased parasitism was notably observed in all cases. Body condition and latitude presented either a positive or negative association with the presence or abundance of parasites depending on the species. It is notable that the likely native Physaloptera sp. is widely distributed among invasive rodents. Further, gravid females were found, suggesting spillback of this species to the native fauna. The low frequency and abundance of highly zoonotic hymenolepid species suggest that rodents are of low concern regarding gastrointestinal zoonotic helminths.
Project description:Autophagic and endosomal dysfunctions are prominently observed at preclinical stages of Alzheimer's disease (AD) as well as in presenilin (PSEN) 1-deficient mice and neurons. In the latter, the defects relate to the γ-secretase-independent role of PSEN in lysosomal fusion and organelle turnover. While we demonstrated previously that the impaired capacity of lysosomal fusion is associated with a significant reduction in lysosomal calcium storage/release, the underlying mechanism remained unexplored. Here we demonstrate that PSEN-deficient cells are impaired in endosomal recycling of several cargo proteins reminiscent of clathrin-independent carriers and lipid rafts. This is accompanied by the accumulation of cholesterol in LAMP1-positive organelles. The small GTPase ARF6, an important regulator of lipid raft recycling, fully rescues the endo-lysosomal abnormalities in PSEN-/- cells, suggesting that defective recycling is upstream of lysosomal dysfunction. PSEN-/- cells and neurons present significantly reduced ARF6 expression levels. Importantly, similar decreased ARF6 levels are observed in aging murine neurons and brain and are even more pronounced in AD brains, suggesting a particular vulnerability of ARF6-mediated recycling in the early etiology of AD.