Project description:The generation of insulin-producing pancreatic cells from stem cells in vitro would provide an unprecedented cell source for drug discovery and cell transplantation therapy in diabetes. However, insulin-producing cells previously generated from human pluripotent stem cells (hPSC) lack many functional characteristics of bona fide β cells. Here we report a scalable differentiation protocol that can generate hundreds of millions of glucose-responsive β cells from hPSC in vitro. These stem cell derived cells (SC) express markers found in mature β cells, flux Ca2+ in response to glucose, package insulin into secretory granules and secrete quantities of insulin comparable to adult β cells in response to multiple sequential glucose challenges in vitro. Furthermore, these cells secrete human insulin into the serum of mice shortly after transplantation in a glucose-regulated manner, and transplantation of these cells ameliorates hyperglycemia in diabetic mice.
Project description:The generation of insulin-producing pancreatic cells from stem cells in vitro would provide an unprecedented cell source for drug discovery and cell transplantation therapy in diabetes. However, insulin-producing cells previously generated from human pluripotent stem cells (hPSC) lack many functional characteristics of bona fide β cells. Here we report a scalable differentiation protocol that can generate hundreds of millions of glucose-responsive β cells from hPSC in vitro. These stem cell derived cells (SC) express markers found in mature β cells, flux Ca2+ in response to glucose, package insulin into secretory granules and secrete quantities of insulin comparable to adult β cells in response to multiple sequential glucose challenges in vitro. Furthermore, these cells secrete human insulin into the serum of mice shortly after transplantation in a glucose-regulated manner, and transplantation of these cells ameliorates hyperglycemia in diabetic mice. Differentiated cells were sorted and processed for RNA isolation using the MARIS protocol published previously (PMID: 24516164.) Human embryonic stem cell (hESC) line HUES8 was differentiated into SC-beta cells. Two biological replicates were analyzed. Those data were normalized together with and compared to existing, previously published data from Hrvatin et al. ( (PMID: 24516164) from human islet -derived insulin+ cells, undifferentiated HUES8 hES cells, and insulin+ cells derived from HUES8 cells according to previously published protocols.
Project description:β cell proliferation rates decline with age and adult β cells have limited self-duplicating activity for regeneration, which predisposes to diabetes. Here we show that, among MYC family members, Mycl was expressed preferentially in proliferating immature endocrine cells. Genetic ablation of Mycl caused a modest reduction in cell proliferation of pancreatic endocrine cells in neonatal mice. By contrast, systemic expression of Mycl in mice stimulated proliferation in pancreatic islet cells and resulted in expansion of pancreatic islets without forming tumors in other organs. Single-cell RNA sequencing and genetic tracing experiments revealed that the expression of Mycl provoked transcription signatures associated with immature proliferating endocrine cells and stimulated self-duplication in adult hormone-expressing cells. The expanded hormone-expressing cells ceased proliferation but persisted after withdrawal of Mycl expression. Remarkably, a subset of the expanded α cells gave rise to insulin-producing cells after the withdrawal. Moreover, transient Mycl expression in vivo was sufficient to normalize increased blood glucose levels in diabetic mice evoked by chemical ablation of β cells. In vitro expression of Mycl similarly provoked active replication without inducing apoptosis in adult hormone-expressing islet cells, even those from aged mice. Furthermore, the expanded islet cells functioned in diabetic mice after transplantation. Finally, we show that MYCL stimulated self-duplication of human adult cadaveric islet cells. Collectively, these results demonstrate that sole induction of Mycl expands adult β cells both in vivo and in vitro. Moreover, islet cell-specific reprogramming via transient Mycl transduction elicits endogenous expansion of insulin-producing cells in adult pancreas through both self-duplication of β cells and transdifferentiation ofα cells into insulin-producing cells, which may provide a regenerative strategy of β cells.
Project description:β cell proliferation rates decline with age and adult β cells have limited self-duplicating activity for regeneration, which predisposes to diabetes. Here we show that, among MYC family members, Mycl was expressed preferentially in proliferating immature endocrine cells. Genetic ablation of Mycl caused a modest reduction in cell proliferation of pancreatic endocrine cells in neonatal mice. By contrast, systemic expression of Mycl in mice stimulated proliferation in pancreatic islet cells and resulted in expansion of pancreatic islets without forming tumors in other organs. Single-cell RNA sequencing and genetic tracing experiments revealed that the expression of Mycl provoked transcription signatures associated with immature proliferating endocrine cells and stimulated self-duplication in adult hormone-expressing cells. The expanded hormone-expressing cells ceased proliferation but persisted after withdrawal of Mycl expression. Remarkably, a subset of the expanded α cells gave rise to insulin-producing cells after the withdrawal. Moreover, transient Mycl expression in vivo was sufficient to normalize increased blood glucose levels in diabetic mice evoked by chemical ablation of β cells. In vitro expression of Mycl similarly provoked active replication without inducing apoptosis in adult hormone-expressing islet cells, even those from aged mice. Furthermore, the expanded islet cells functioned in diabetic mice after transplantation. Finally, we show that MYCL stimulated self-duplication of human adult cadaveric islet cells. Collectively, these results demonstrate that sole induction of Mycl expands adult β cells both in vivo and in vitro. Moreover, islet cell-specific reprogramming via transient Mycl transduction elicits endogenous expansion of insulin-producing cells in adult pancreas through both self-duplication of β cells and transdifferentiation ofα cells into insulin-producing cells, which may provide a regenerative strategy of β cells.
Project description:Pancreatic islet transplantation as a cure for type 1 diabetes (T1D) cannot be scaled up due to a scarcity of human pancreas donors. In vitro expansion of beta cells from mature human pancreatic islets provides an alternative source of insulin-producing cells. The exact nature of the expanded cells produced by diverse expansion protocols, and their potential for differentiation into functional beta cells, remain elusive. We performed a large-scale meta-analysis of gene expression in human pancreatic islet cells, which were processed using three different previously described protocols for expansion and attempted re-differentiation. All three expansion protocols induced dramatic changes in the expression profiles of pancreatic islets; many of these changes are shared among the three protocols. Attempts at re-differentiation of expanded cells induce a limited number of gene expression changes. Nevertheless, these fail to restore a pancreatic islet-like gene expression pattern. Comparison with a collection of public microarray datasets confirmed that expanded cells are highly comparable to mesenchymal stem cells. Genes induced in expanded cells are also enriched for targets of transcription factors important for pluripotency induction. The present data increases our understanding of the active pathways in expanded and re-differentiated islets. Knowledge of the mesenchymal stem cell potential may help development of drug therapeutics to restore beta cell mass in T1D patients.
Project description:We determined the global microRNA expression profiles of primary human gallbladder cells and genetically reprogrammed human gallbladder cells and compared with pancreatic beta cells to ascertain the degree of cellular transdifferentatiation of insulin-producing human gallbladder cells to become beta-like cells. First, we cultured patient-derived gallbladder cells and then we transduced these with beta cell transcription factors to reprogram gallbladder cells to become beta-like cells. We used a pan-islet surface monoclonal antibody to enrich for insulin-producing reprogrammed human gallbladder cells using FACS.
Project description:We determined the global gene expression profiles of primary human gallbladder cells and genetically reprogrammed human gallbladder cells and compared with pancreatic beta cells to ascertain the degree of cellular transdifferentatiation of insulin-producing human gallbladder cells to become beta-like cells. First, we cultured patient-derived gallbladder cells and then we transduced these with beta cell transcription factors to reprogram gallbladder cells to become beta-like cells. We used a pan-islet surface monoclonal antibody to enrich for insulin-producing reprogrammed human gallbladder cells using FACS.
Project description:Pancreatic islet transplantation as a cure for type 1 diabetes (T1D) cannot be scaled up due to a scarcity of human pancreas donors. In vitro expansion of beta cells from mature human pancreatic islets provides an alternative source of insulin-producing cells. The exact nature of the expanded cells produced by diverse expansion protocols, and their potential for differentiation into functional beta cells, remain elusive. We performed a large-scale meta-analysis of gene expression in human pancreatic islet cells, which were processed using three different previously described protocols for expansion and attempted re-differentiation. All three expansion protocols induced dramatic changes in the expression profiles of pancreatic islets; many of these changes are shared among the three protocols. Attempts at re-differentiation of expanded cells induce a limited number of gene expression changes. Nevertheless, these fail to restore a pancreatic islet-like gene expression pattern. Comparison with a collection of public microarray datasets confirmed that expanded cells are highly comparable to mesenchymal stem cells. Genes induced in expanded cells are also enriched for targets of transcription factors important for pluripotency induction. The present data increases our understanding of the active pathways in expanded and re-differentiated islets. Knowledge of the mesenchymal stem cell potential may help development of drug therapeutics to restore beta cell mass in T1D patients. Experiment Overall Design: In this study, we have tested three different protocols to expand human pancreatic islets in monolayer and after attempted maneuvers to re-differentiate the expanded cells back to islets. We have characterized the resulting cells in detail by performing microarray analyses with fresh pancreatic islets, expanded islet cells and re-differentiated cells. Genes modified by either of three protocols have 70 to 80% overlap with the genes changed by the other two protocols. Although there are promising changes in the right direction, none of the three protocols could achieve a return to a functional islet state. The expanded cells highly resemble Mesenchymal Stem Cells (MSC), and similar gene regulatory networks seem to be active in both cell types. On the other hand, the expanded islet cells are different from MSC in that they seem to retain activity of some islet gene modules. The current results highlight the importance of designing new strategies that take into account the MSC potential of expanded cells.
Project description:Expansion of beta cells from the limited number of adult human islet donors is an attractive prospect for increasing cell availability for cell therapy of diabetes. However, while evidence supports the replicative capacity of adult beta cells in vivo, attempts at expanding human islet cells in tissue culture resulted in loss of beta-cell phenotype. Using a genetic lineage-tracing approach we have provided evidence for massive proliferation of beta-cell-derived (BCD) cells within these cultures. Expansion involves dedifferentiation resembling epithelial-mesenchymal transition (EMT). Epigenetic analyses indicate that key beta-cell genes maintain a partially open chromatin structure in expanded BCD cells, although they are not transcribed. Here we report that BCD cells can be induced to redifferentiate by a combination of soluble factors. The redifferentiated cells express beta-cell genes, store insulin in typical secretory vesicles, and release it in response to glucose. The redifferentiation process involves mesenchymal-epithelial transition, as judged from changes in gene expression. Moreover, inhibition of the EMT effector SLUG using shRNA results in stimulation of redifferentiation. BCD cells also give rise at a low rate to cells expressing other islet hormones, suggesting transition through an islet progenitor-like stage during redifferentiation. These findings suggest that ex-vivo expansion of adult human islet cells is a promising approach for generation of insulin-producing cells for transplantation, as well as basic research, toxicology studies, and drug screening. Gene expression was studied in unexpanded islets (4 donors), expanded and dedifferentiated islet cells (4 donors), and re-differentiated islet cells (3 donors). The experiment was performed in 3 batches (see Date in the description table below).
Project description:The activity of pancreatic islets’ insulin-producing β-cells is closely regulated by systemic cues and, locally, by adjacent islet hormone-producing “non-β-cells” (namely α-, δ- and γ-cells). Still, it is unclear whether the presence of the non-β-cells is a requirement for accurate insulin secretion. Here, we generated and studied a mouse model in which adult islets are exclusively composed of β-cells, and human pseudoislets containing only primary β-cells. Mice lacking non-β-cells had optimal blood glucose regulation. They exhibited enhanced glucose tolerance, insulin sensitivity and restricted body weight gain under high-fat diet. The insulin secretion dynamics in islets composed of only β-cells was like in intact islets, both in homeostatic conditions and upon extreme insulin demand. Similarly, human β-cell pseudoislets retained the glucose-regulated mitochondrial respiration, insulin secretion and exendin-4 responses of human islets comprising all four cell types. Together, the findings indicate that non-β-cells are dispensable for blood glucose homeostasis and β-cell function. This is particularly relevant in diabetes, where non-β-cells become dysfunctional and worsen the disease’s pathophysiology. These results support efforts aimed at developing diabetes treatments by generating β-like cell clusters devoid of non-β-cells, as for example from human embryonic stem cells and/or by in situ conversion of non-β-cells into insulin producers.