Project description:Transcriptional profiling of human lung minimally invasive adenocarcinoma cells comparing control lepidic growth (LG) cell pool with micro-invasion (MI) cell pool. Two-condition experiment, LG vs. MI cell pools. Biological replicates: 1 control LG cancer cell, 1 MI cancer cell in an individual MIA tumor. One replicate per array.
Project description:Transcriptional profiling of human lung minimally invasive adenocarcinoma cells comparing control lepidic growth (LG) cell pool with micro-invasion (MI) cell pool.
Project description:The cell ecology and spatial niche implicated in the dynamic and sequential process of lung adenocarcinoma (LUAD) from adenocarcinoma in situ (AIS) to minimally invasive adenocarcinoma (MIA) and subsequent invasive adenocarcinoma (IAC) have not yet been elucidated. Here, we performed an integrative analysis of single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to characterize the cell atlas of the invasion trajectory of LUAD. We found that the UBE2C + cancer cell subpopulation constantly increased during the invasive process of LUAD with remarkable elevation in IAC, and its spatial distribution was in the peripheral cancer region of the IAC, representing a more malignant phenotype. Furthermore, analysis of the TME cell type subpopulation showed a constant decrease in mast cells, monocytes, and lymphatic endothelial cells, which were implicated in the whole process of invasive LUAD, accompanied by an increase in NK cells and MALT B cells from AIS to MIA and an increase in Tregs and secretory B cells from MIA to IAC. Notably, for AIS, cancer cells, NK cells, and mast cells were colocalized in the cancer region; however, for IAC, Tregs colocalized with cancer cells. Finally, communication and interaction between cancer cells and TME cell-induced constitutive activation of TGF-β signaling were involved in the invasion of IAC. Therefore, our results reveal the specific cellular information and spatial architecture of cancer cells and TME subpopulations, as well as the cellular interaction between them, which will facilitate the identification and development of precision medicine in the invasive process of LUAD from AIS to IAC.
Project description:Minimally invasive follicular thyroid carcinoma (MI-FTC) is characterized by limited capsular and/or vascular invasion with good long-term outcomes. However, some cases of MI-FTC show a poor prognosis because of severe distant metastasis. Nonetheless, no method has been established for predicting the prognosis of MI-FTC. This study was conducted to identify novel prognostic factors for metastatic MI-FTC by use of the formalin-fixed paraffin-embedded (FFPE) specimens of this carcinoma.
Project description:Clinical FFPE tissue proteomic analyses were performed for early lung adenocarcinomas including adenocarcinoma in-situ (AIS), minimally invasive adenocarcinoma (MIA) and lepidic predominant invasive adenocarcinoma (LPA).
Project description:The prevalence of lung adenocarcinoma (LUAD) has increased sharply in East Asia. Early diagnosis leads to better survival rates, but this requires an improved understanding of the molecular changes during early tumorigenesis, particularly in non-smokers. We performed whole exome-sequencing and RNA-sequencing of samples from 94 East Asian patients with precancerous lesions (25 with atypical adenomatous hyperplasia [AAH]; 69 with adenocarcinoma in situ [AIS]) and 73 patients with early invasive lesions (minimally invasive adenocarcinoma [MIA]). Cellular analysis revealed that the activities of endothelial and stromal cells could be used to categorize tumors into molecular subtypes within pathology-defined types of lesions. These subtypes were linked with the advanced radiology-defined type of lesions and corresponded to immune cell infiltration throughout the early progression of LUAD. Characterization of these lesion types identified positively selected mutation patterns and suggested that angiogenesis of the late-stage AIS type potentially contributes to tissue invasion of the MIA type. Our findings offer a novel resource that may help to improve early diagnosis and patient prognosis, and also suggest possible approaches for early disease interception.
Project description:The paper describes a model of tumor invasion to bone marrow.
Created by COPASI 4.26 (Build 213)
This model is described in the article:
Modeling invasion of metastasizing cancer cells to bone marrow utilizing ecological principles
Kun-Wan Chen, Kenneth J Pienta
Theoretical Biology and Medical Modelling 2011, 8:36
Abstract:
Background: The invasion of a new species into an established ecosystem can be directly compared to the steps involved in cancer metastasis. Cancer must grow in a primary site, extravasate and survive in the circulation to then intravasate into target organ (invasive species survival in transport). Cancer cells often lay dormant at their metastatic site for a long period of time (lag period for invasive species) before proliferating (invasive spread). Proliferation in the new site has an impact on the target organ microenvironment (ecological impact) and eventually the human host (biosphere impact).
Results: Tilman has described mathematical equations for the competition between invasive species in a structured habitat. These equations were adapted to study the invasion of cancer cells into the bone marrow microenvironment as a structured habitat. A large proportion of solid tumor metastases are bone metastases, known to usurp hematopoietic stem cells (HSC) homing pathways to establish footholds in the bone marrow. This required accounting for the fact that this is the natural home of hematopoietic stem cells and that they already occupy this structured space. The adapted Tilman model of invasion dynamics is especially valuable for modeling the lag period or dormancy of cancer cells.
Conclusions: The Tilman equations for modeling the invasion of two species into a defined space have been modified to study the invasion of cancer cells into the bone marrow microenvironment. These modified equations allow a more flexible way to model the space competition between the two cell species. The ability to model initial density, metastatic seeding into the bone marrow and growth once the cells are present, and movement of cells out of the bone marrow niche and apoptosis of cells are all aspects of the adapted equations. These equations are currently being applied to clinical data sets for verification and further refinement of the models.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models .
To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide.
Please refer to CC0 Public Domain Dedication for more information.
Project description:The paper describes a model of tumor invasion to bone marrow.
Created by COPASI 4.26 (Build 213)
This model is described in the article:
Modeling invasion of metastasizing cancer cells to bone marrow utilizing ecological principles
Kun-Wan Chen, Kenneth J Pienta
Theoretical Biology and Medical Modelling 2011, 8:36
Abstract:
Background: The invasion of a new species into an established ecosystem can be directly compared to the steps involved in cancer metastasis. Cancer must grow in a primary site, extravasate and survive in the circulation to then intravasate into target organ (invasive species survival in transport). Cancer cells often lay dormant at their metastatic site for a long period of time (lag period for invasive species) before proliferating (invasive spread). Proliferation in the new site has an impact on the target organ microenvironment (ecological impact) and eventually the human host (biosphere impact).
Results: Tilman has described mathematical equations for the competition between invasive species in a structured habitat. These equations were adapted to study the invasion of cancer cells into the bone marrow microenvironment as a structured habitat. A large proportion of solid tumor metastases are bone metastases, known to usurp hematopoietic stem cells (HSC) homing pathways to establish footholds in the bone marrow. This required accounting for the fact that this is the natural home of hematopoietic stem cells and that they already occupy this structured space. The adapted Tilman model of invasion dynamics is especially valuable for modeling the lag period or dormancy of cancer cells.
Conclusions: The Tilman equations for modeling the invasion of two species into a defined space have been modified to study the invasion of cancer cells into the bone marrow microenvironment. These modified equations allow a more flexible way to model the space competition between the two cell species. The ability to model initial density, metastatic seeding into the bone marrow and growth once the cells are present, and movement of cells out of the bone marrow niche and apoptosis of cells are all aspects of the adapted equations. These equations are currently being applied to clinical data sets for verification and further refinement of the models.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models .
To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide.
Please refer to CC0 Public Domain Dedication for more information.
Project description:From the parental breast cancer cell line MCF7 (weakly invasive), we progressively selected hyperinvasive subclones. We compared the gene expression between the parental MCF7-I0 and the hyper-invasive cells MCF7-I6. We used Affymetrix U133 Plus 2 microarrays to detail the global programme of gene expression underlying weakly and highly invasive breast cancer cells derived from the human breast cancer cell line MCF7. The hyper-invasive subclones were selected using Matrigel invasion chambers as a model for the invasion process in vivo. The cells that invaded through the membrane were cultured and re-introduced into an additional invasion assay. This methodology was repeated to give rise to a subclone of MCF7 cells that had invaded six times; these were termed MCF7-I6 cells. The invasive capacity of MCF7-I6 cells was shown to be more than 11 times greater than the parental cells, which we denote as MCF7-I0. Thus, these hyper-invasive cells were present within the heterogeneous population, and we speculated that differences in gene expression between the MCF7-I6 cells and the parental cells MCF7-I0 may be involved in the invasion process.