Project description:The aim of the study was to decipher metabolisms responsible (i) for the peculiar adaptation of L. plantarum during soy juice fermentation and (ii) for the release of aroma compounds, amino and short-chain fatty acid, and metabolites with health-promoting properties in soy yogurt. The strategy was the sequencing and annotation of a strain (L. plantarum CIRM-BIA777, PRJEB77707) able to degrade galacto- oligosaccharides, the sampling of soy yogurt, RNA-seq to identify differentially expressed genes of L. plantarum and corresponding metabolisms throughout the kinetics of fermentation. Acids and volatile compounds were also quantified.
Project description:Modulation of Lactobacillus plantarum gastrointestinal robustness by fermentation conditions enables identification of bacterial robustness markers
Project description:Lactobacillus plantarum was grown anaerobically on 4 different sugars (Mannose Lactose Fructose and Sucrose) to OD600 = 1.0. Samples were compared with a similar grown culture on glucose. An independnet biological duplicate of tht experimnet was performed (samples 1 and 2).
Project description:Identification of proteins contained in extracellular vesicles of Lactiplantibacillus plantarum PCM 2675. Dataset is related to publication http://dx.doi.org/10.20517/evcna.2024.49. This work was financially supported by the National Science Centre, Poland (no. 2021/43/D/NZ6/01464).
Project description:Probiotics have been suggested to ameliorate the function of the intestinal epithelial barrier and so have several mediators and receptors of the expanded endocannabinoid system, the endocannabinoidome (eCBome). Here we cocultured three live strains of Lactiplantibacillus plantarum with intestinal epithelial organoids to study their effects on the gut barrier function and the possible involvement of the eCBome in this effect. All three L.plantarum strains variously reduced the trans-epithelial permeability of intestinal organoids and promoted increased mRNA expression of several tight junction proteins and intestinal barrier proteins. Concomitantly, the three strains upregulated the expression of genes encoding biosynthetic enzymes (i.e., NapePLD, Abdh4, Gde1, Daglb) and receptors (i.e., Cnr1, Cnr2, Gpr55, and Ppara), while concurrently downregulating the expression of two essential catabolic enzymes (i.e. Faah and Naaa), involved in the signaling of several eCBome mediators known for their role in regulating the intestinal epithelial barrier. Selective inhibitors of eCBome mediator degrading enzymes FAAH and MAGL, i.e., URB597 and JZL184, increased N-acyl-ethanolamine (NAE) and 2-monoacylglycerol (2-MAG) levels, respectively, enhanced the expression of intestinal epithelial barrier genes and reduced the trans-epithelial permeability of organoids, as for L. plantarum strains. Interestingly, inflammation-induced trans-epithelial permeability in organoids was also reversed by both FAAH and MAGL inhibitors. We surmise that elevated endogenous levels of either NAEs or 2-MAGs promote improvement in small intestine trans-epithelial permeability and that L. plantarum strains may exploit this mechanism to promote these beneficial effects.
Project description:Lactobacillus plantarum WCFS1 was grown under anaerobic carbon-limited conditions in a chemostat with complete biomass retention (retentostat). In this cultivation system, the biomass concentration progressively increases while the dilution rate is kept constant, resulting in decreased specific susbtrate availibility, and hence, a progressive decrease in the specific growth rate. During the progressive transition from growth to virtually no growth, the global changes occurring at the level of metabolism and gene expression were studied using a genome-scale metabolic model and DNA microarrays. Four different time-points are compared, corresponding to 4 different specific growth rates, and hence, 4 different ratios of energy used for maintenance and growth. The samples taken at the start of retentostat cultivation serves as a a reference sample, to which the three other samples (taken after 3 days, 17 days, and 31 days under retentostat conditions) are compared. No biological replicates: all samples were taken from the same retentostat fermentation.